scholarly journals Corrigendum to “Seeding-free synthesis of FAU-type membrane with dry gel modified α-alumina support” [Microporous Mesoporous Mater. 323 (2021) 111219/10.1016/j.micromeso.2021.111219]

2022 ◽  
Vol 332 ◽  
pp. 111661
Author(s):  
Bin Xia ◽  
Songyi Wang ◽  
BeiBei Li ◽  
Yi Cao ◽  
Taohong Liu ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Tadej Žumbar ◽  
Alenka Ristić ◽  
Goran Dražić ◽  
Hristina Lazarova ◽  
Janez Volavšek ◽  
...  

The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


Author(s):  
Helena Schneider ◽  
Lucas K. Schindel ◽  
Lucas B. Gomes ◽  
Isabel C. Tessaro ◽  
Nilson R. Marcilio

2017 ◽  
Vol 733 ◽  
pp. 42-46
Author(s):  
Habiba Shehu ◽  
Edidiong Okon ◽  
Edward Gobina

Shuttle tankers are becoming more widely used in deep water installations as a means of transporting crude oil to storage plants and refineries. The emissions of hydrocarbon vapours arise mainly during loading and offloading operations. Experiments have been carried out on the use of polyurethane/zeolite membrane on an alumina support for the separation of methane from carbon dioxide and oxygen. The physical properties of the membrane were investigated by FTIR. Single gas permeation tests with methane, propane, oxygen and carbon dioxide at a temperature of 293 K and pressure ranging from 0.1 to 1.0 x 10-5 Pa were carried out. The molar flux of the gases through the membrane was in the range of 3 x 10-2 to 1 x 10-1 molm-2s-1. The highest separation factor of CH4/CO2 and CH4/O2 and CH4/C3H8 was determined to be 1.7, 1.7 and 1.6 respectively.


2011 ◽  
Vol 84 (8) ◽  
pp. 1385-1393 ◽  
Author(s):  
A. A. Lamberov ◽  
I. F. Khalilov ◽  
I. R. IL’yasov ◽  
A. Sh. Bikmurzin ◽  
V. M. Shatilov ◽  
...  

2006 ◽  
Vol 510-511 ◽  
pp. 786-789 ◽  
Author(s):  
Dong Sik Bae ◽  
Byung Ik Kim ◽  
Kyong Sop Han

ZnO-TiO2 nanoparticles were synthesized by a reverse micelle and sol-gel process. The average particle size of the colloid was below 30 nm and well dispersed in the solution. ZnOTiO2 composite membranes were fabricated by using the dip-coating method on a porous alumina support. ZnO-TiO2 composite membranes showed a crack-free microstructure and narrow particle size distribution even after the heat treatment up to 600°C. The average particle size of the membrane was 30-40nm, and the pore size of ZnO-TiO2 composite membrane was below 10 nm.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 119 ◽  
Author(s):  
Mahdi Nikbakht Fini ◽  
Sepideh Soroush ◽  
Mohammad Montazer-Rahmati

In the present work, ceramic-supported chitosan hybrid membranes were prepared for the pervaporation dehydration of ethanol. Mullite and combined mullite-alumina (50% alumina content) tubular low-cost ceramic supports were fabricated, and their influence on membrane performance was compared to a commercial α-alumina support. The membrane preparation parameters were different ceramic supports and the concentration of chitosan solution (varying from 2 wt.% to 4 wt.%). The supports and hybrid membranes were characterized by field emission scanning electron microscopy (FE-SEM) and contact angle measurements. The results show, with increasing chitosan concentration, the permeability decreases, and selectivity increases. It was also found that the separation factor decreases with increasing feed temperature and feed water content, while the permeation flux increases. The membrane that was coated on α-alumina support with a 3 wt.% chitosan concentration exhibited the best pervaporation performance, leading to a permeation flux and separation factor of 352 g·m−2·h−1 and 200 for 90 wt.% ethanol in feed at 60 °C, respectively.


1980 ◽  
Vol 34a ◽  
pp. 639-644 ◽  
Author(s):  
Magali Boutonnet ◽  
Carlaxel Andersson ◽  
Ragnar Larsson ◽  
Jussi Valkonen ◽  
V. P. Spiridonov ◽  
...  

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
DaeHun Kim ◽  
YongSung Kwon ◽  
Jung-Hyun Lee ◽  
Seong-Joong Kim ◽  
You-In Park

For ethylene/ethane separation, a CMS (carbon molecular sieve) membrane was developed with a PAN (polyacrylonitrile) polymer precursor on an alumina support. To provide an excellent thermal property to PAN precursor prior to the pyrolysis, the stabilization as a pre-treatment process was carried out. Tuning the stabilization condition was very important to successfully preparing the CMS membrane derived from the PAN precursor. The stabilization and pyrolysis processes for the PAN precursor were finely tuned, and optimized in terms of stabilization temperature and time, as well as pyrolysis temperature, heating rate, and soaking time. The PAN stabilized at >250 °C showed improved thermal stability and carbon yield. The CMS membrane derived from stabilized PAN showed reasonable separation performance for ethylene permeance (0.71 GPU) and ethylene/ethane selectivity (7.62), respectively. Increasing the pyrolysis temperature and soaking time gave rise to an increase in the gas permeance, and a reduction in the membrane selectivity. This trend was opposite to that for the CMS membranes derived from other polymer precursors. The optimized separation performance (ethylene permeance of 2.97 GPU and ethylene/ethane selectivity of 7.25) could be achieved at the pyrolysis temperature of 650 °C with a soaking time of 1 h. The separation performance of the CMS membrane derived from the PAN precursor was comparable to that of other polymer precursors, and surpassed them regarding the upper bound trade off.


2005 ◽  
Vol 16 (8) ◽  
pp. 1449-1452 ◽  
Author(s):  
Wei Xiong ◽  
Hongxia Ma ◽  
Yanyi Hong ◽  
Hua Chen ◽  
Xianjun Li

Sign in / Sign up

Export Citation Format

Share Document