Fabrication and Microstructure of ZnO-TiO2 Composite Membranes by a Reverse Micelle and Sol-Gel Processing

2006 ◽  
Vol 510-511 ◽  
pp. 786-789 ◽  
Author(s):  
Dong Sik Bae ◽  
Byung Ik Kim ◽  
Kyong Sop Han

ZnO-TiO2 nanoparticles were synthesized by a reverse micelle and sol-gel process. The average particle size of the colloid was below 30 nm and well dispersed in the solution. ZnOTiO2 composite membranes were fabricated by using the dip-coating method on a porous alumina support. ZnO-TiO2 composite membranes showed a crack-free microstructure and narrow particle size distribution even after the heat treatment up to 600°C. The average particle size of the membrane was 30-40nm, and the pore size of ZnO-TiO2 composite membrane was below 10 nm.

2017 ◽  
Vol 17 (01n02) ◽  
pp. 1760012
Author(s):  
S. Gowreesan ◽  
A. Ruban Kumar

The scope of the present work is in enhancing the particle size, and dielectric properties of Mg-substituted Cobalt ferrites nanoparticles prepared by sol–gel auto combustion method. The different ratios of Mg-substituted Co Ferrites (Co[Formula: see text]MgxFe2O4([Formula: see text], 0.05, 0.10, 0.15, 0.20 and 0.30)) are calcinated at 850[Formula: see text]C. The synthesized nanoparticles were characterized by powder XRD, FTIR, FE-SEM, EDX techniques and dielectric behavior. The structural parameters were confirmed from powder XRD and the average particle size is obtained from 39 to 67 nm due to the substitution of Mg[Formula: see text] which was calculated by Debye Scherrer’s formula. FE-SEM showed the surface morphology of the different ratio of the sample. The dielectric loss has measured the frequency range of 50[Formula: see text]Hz–5[Formula: see text]MHz. From electrical modulus, conductivity relaxation and thermal activation of charge carriers has been discussed.


2016 ◽  
Vol 709 ◽  
pp. 66-69
Author(s):  
Jeyashelly Andas ◽  
Rahmah Atikah Rosdi ◽  
Nur Izzati Mohd Anuar

A series of Fe-Co nanoparticles were synthesized via sol-gel route at acidic, neutral and basic condition using rice husk as the silica source. The synthesized nanomaterials were designated as Fe-Co3, Fe-Co7 and Fe-Co9 and characterized by Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) and particle size analyzer. The great effect of pH was clearly evidenced from the shifting in the siloxane bond in the FTIR spectrum. TEM investigation confirmed the existence of discrete and almost sphere like nanoparticles. The particle size decreased with an increase in the pH, registering the smallest average particle size at pH 9. In brief, this study promises a fast, rapid and promising method for the conversion of silica rice husk into nanoscale bimetallic materials.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 801-808 ◽  
Author(s):  
M. RAJENDRAN ◽  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

A novel all-inorganic aqueous sol–gel process has been developed to fabricate LaFeO3 thin films by dip-coating. Stable, positively charged colloidal sol particles of hydrous lanthanum ferrite with an average particle size (Z av ) of 7 nm were prepared and coated onto quartz plates under controlled conditions. The sols have been characterized using photon correlation spectroscopy (PCS) for Z av and size distribution. The redispersible gel was characterized by thermogravimetric and differential thermal analysis (TG-DTA) and also by isothermal heating followed by X-ray diffraction to identify the reaction sequence to form LaFeO 3. The sol–gel films as deposited were X-ray amorphous on heating up to 500°C, partially crystalline at 600°C, fully crystalline and single phase at 650°C and above. These films were continuous, polycrystalline, single phase, had uniform thickness in the range between 180 to 1000 nm, depending on deposition conditions, and showed about 80% optical transmittance. The optical band gap varied from 2.7 to 3.3 eV as a function of the annealing temperature. The refractive index increased with increase in annealing temperature from 1.55 at 500°C to 1.86 at 800°C.


Author(s):  
Van Minh Nguyen ◽  
Tien Hiep Nguyen ◽  
Stanislav V. Gorobinsky

In this work, nanopowders (NP) Co(OH)2 were obtained by chemical precipitation from aqueous solutions of cobalt nitrate Co(NO3)2 and alkali NaOH (10 wt. %) using surfactants: sodium dodecyl sulfate (SDS) and cetylpyridinium chloride (CPC) (0.1 wt. %). It was shown that Co(OH)2 NP with 0.1% SDS is the best quality product, since its dispersion increases more than 2 times compared to the samples with 0.1% CPC and without surfactants. In this case, the Co(OH)2 NP has the form of flakes with an irregular shape and a nanometer size (about 100 nm) with an average thickness of 30 nm. It was found that the average particle size of Co NP obtained by hydrogen reduction of Co(OH)2 NP with 0.1% SDS at 280°C has a maximum on the distribution histogram shifted to the interval 41–50 nm, which is characterized by a narrow particle size distribution and represents spherical particles sintered with each other.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3111
Author(s):  
Evgeny A. Ekimov ◽  
Vladimir S. Krivobok ◽  
Mikhail V. Kondrin ◽  
Dmitry A. Litvinov ◽  
Ludmila N. Grigoreva ◽  
...  

The development of new strategies for the mass synthesis of SiC nanocrystals with high structure perfection and narrow particle size distribution remains in demand for high-tech applications. In this work, the size-controllable synthesis of the SiC 3C polytype, free of sp2 carbon, with high structure quality nanocrystals, was realized for the first time by the pyrolysis of organosilane C12H36Si6 at 8 GPa and temperatures up to 2000 °C. It is shown that the average particle size can be monotonically changed from ~2 nm to ~500 nm by increasing the synthesis temperature from 800 °C to 1400 °C. At higher temperatures, further enlargement of the crystals is impeded, which is consistent with the recrystallization mechanism driven by a decrease in the surface energy of the particles. The optical properties investigated by IR transmission spectroscopy, Raman scattering, and low-temperature photoluminescence provided information about the concentration and distribution of carriers in nanoparticles, as well as the dominant type of internal point defects. It is shown that changing the growth modes in combination with heat treatment enables control over not only the average crystal size, but also the LO phonon—plasmon coupled modes in the crystals, which is of interest for applications related to IR photonics.


2004 ◽  
Vol 847 ◽  
Author(s):  
Christophe Barbé ◽  
Sandrine Calleja ◽  
Linggen Kong ◽  
Elizabeth Drabarek ◽  
Alexandra Bush ◽  
...  

ABSTRACTUsing sol-gel technology combined with water-in-oil (W/O) emulsions, we have developed an innovative method for producing ceramic particles with independent control over the release rate and particle size. The average particle size can be varied from 10 nm to 100 μm and is controlled by the emulsion chemistry. The release rate can be independently varied from mg/hours to mg/month, and is controlled by the internal microstructure of the particles and the initial sol-gel chemistry.


1994 ◽  
Vol 351 ◽  
Author(s):  
Yong S. Zhen ◽  
Kenneth E. Hrdina ◽  
Robert J. Remick

ABSTRACTWe have developed a new poly-foam process for the cost effective preparation of ceramic nanoparticles. The process utilizes the chemistry of polyurethane reactions and is proven to be effective for forming nanometer size ceramic powders of a great variety of single metal oxides and mixed metal oxides. In general, ceramic powders can be prepared by this process having a range of average particle size between 3 to 50 nm, with very narrow particle size distribution. They are free of hard agglomerates, are chemically pure and uniform, and are essentially spherical in shape.


2012 ◽  
Vol 600 ◽  
pp. 190-193 ◽  
Author(s):  
Wei Wei ◽  
Jing Yi Zhang ◽  
Li Ping Wu ◽  
Guo Tong Qin

The hydrophobic silica granular aerogels were synthesized via sol-gel synthesis followed by ambient pressure drying. The tetraethyloxylane (TEOS) was used as original precursor. The aerogels were analyzed using nitrogen adsorption, scanning electron microscopy (SEM) and laser particle size analyzer. It was found that the aerogel was mesoporous material with high surface area. The aerogels were prepared in grain form by dipping into disperse solution in order to adsorption application. The average particle size of the aerogel was controlled by pH and disperse solution volume. The pH also affected gel time. The aerogels were used to absorb phenol from water. The saturated adsorption amount could reach up to 145 mg•g-1.


Author(s):  
M.L. Reni ◽  
A. Samson Nesaraj

Doped CeO2 based materials are now-a-days proposed as alternate electrolyte materials for solid oxide fuel cells (SOFCs) working at low temperature (~723 – 873 K). In this research work, nanoparticles of CeO2 doped with Gd3+, Sm3+, Ca2+, Sr2+ and Ba2+were prepared by a simple homogeneous chemical precipitation method. The prepared materials (after heat treatment at 1023 K for 2 hours) were systematically characterized by XRD, EDAX analysis, FTIR , particle size analysis and SEM.  Lattice parameters were calculated from the XRD data. The XRD results indicate that all the doped ceria samples studied are single phase with a cubic fluorite structure. The average particle size of the doped ceria powder was about 48 – 115 nm and the particles have shown narrow particle size distribution patterns. AC impedance spectroscopy studies performed on the sintered specimens have shown better oxide ion conductivity values and hence these materials may be suitable for application as electrolyte materials in solid oxide fuel cells working at low temperature (~723 – 873 K). ________________________________________GRAPHICAL ABSTRACT


2021 ◽  
Vol 27 (1) ◽  
pp. 119-124
Author(s):  
Wenzheng XU ◽  
Hao LI ◽  
Xin LIANG ◽  
Jie WANG ◽  
Jinyu PENG ◽  
...  

In this paper, the ultrafine β-hexanitrohexaazaisowurtzitane (β – CL – 20) particles were prepared by spray drying method. The CL – 20 samples were characterized by scanning electron microscope (SEM), particle size analyzer, X-ray diffraction (XRD), and Differential Scanning Calorimeter (DSC). Furthermore, the safety properties of samples under impact and thermal stimulus were tested and analyzed. The results of SEM showed that the average particle size of ultrafine CL – 20 particles with a narrow particle size distribution, were about 320 nm, and the shape was elliptical. The XRD patterns indicated that the polymorphic phase of ultrafine particles was mainly β-type. Compared with that of raw CL – 20, the impact sensitivity of the ultrafine CL – 20 had been decreased significantly, for the drop height (H50) was increased from 13.0 to 33.5 cm. The critical explosion temperature of the ultrafine CL – 20 decreased from 232.16 ℃ to 227.93 ℃, indicating that the thermal stability of the ultrafine CL – 20 is lower than that of raw CL – 20.


Sign in / Sign up

Export Citation Format

Share Document