Interconnectivity imaged in three dimensions: Nano-particulate silica-hydrogel structure revealed using electron tomography

Micron ◽  
2017 ◽  
Vol 100 ◽  
pp. 91-105 ◽  
Author(s):  
C. Hamngren Blomqvist ◽  
T. Gebäck ◽  
A. Altskär ◽  
A.-M. Hermansson ◽  
S. Gustafsson ◽  
...  
2006 ◽  
Vol 514-516 ◽  
pp. 353-358 ◽  
Author(s):  
Shinzo Kohjiya

. Generally rubber products are a typical soft material, and a composite of a nano-filler (typically, carbon black or particulate silica) and a rubber (natural rubber and various synthetics are used). The properties of these soft nano-composites have been well known to depend on the dispersion of the nano-filler in the rubbery matrix. The most powerful tool for the elucidation of it has been transmission electron microscopy (TEM). The microscopic techniques are based on the projection of 3-dimensional (3D) body on a plane (x, y plane), thus the structural information along the thickness (z axis) direction of the sample is difficult to obtain. This paper describes our recent results on the dispersion of carbon black (CB) and particulate silica in natural rubber (NR) matrix observed by TEM combined with electron tomography (3D-TEM) technique, which enabled us to obtain images of 3D nano-structure of the sample. Thus, 3D images of CB and silica in NR matrix are visualized and analyzed in this communication. These results are precious ones for the design of soft nano-composites, and the technique will become an indispensable one in nanotechnology.


2002 ◽  
Vol 10 (2) ◽  
pp. 3-5
Author(s):  
Stephen W. Carmichael

The transmission electron microscope (TEM) was invented in the 1930's, and developments in specimen preparation in the 1950's led to its widespread use as a tool to study structure in biologic systems. Similar in principle to the light microscope, but utilizing a much shorter wavelength for better resolution, the TEM has the image-forming beam pass through the specimen. This results in a two-dimensional image which can be difficult to interpret because features from different depths of the three dimensional specimen are superimposed. Traditionally this was dealt with by cutting sections of plastic-embedded specimens so thin (in the 40 to SO nanometer range) that they effectively had only two dimensions. To allow biologists to examine structures in three dimensions, serial sections are stacked and structures reconstructed. Even though computers have made reconstruction easier, the reality is that resolution in the depth dimension is limited by the section thickness. The technique of electron tomography is emerging as a way to overcome this limitation.


2021 ◽  
Vol 18 (182) ◽  
pp. 20210181
Author(s):  
Chiara Micheletti ◽  
Pedro Henrique Silva Gomes-Ferreira ◽  
Travis Casagrande ◽  
Paulo Noronha Lisboa-Filho ◽  
Roberta Okamoto ◽  
...  

The success of biomaterials for bone regeneration relies on many factors, among which osseointegration plays a key role. Biogran (BG) is a bioactive glass commonly employed as a bone graft in dental procedures. Despite its use in clinical practice, the capability of BG to promote osseointegration has never been resolved at the nanoscale. In this paper, we present the workflow for characterizing the interface between newly formed bone and BG in a preclinical rat model. Areas of bone–BG contact were first identified by backscattered electron imaging in a scanning electron microscope. A focused ion beam in situ lift-out protocol was employed to prepare ultrathin samples for transmission electron microscopy analysis. The bone–BG gradual interface, i.e. the biointerphase, was visualized at the nanoscale with unprecedented resolution thanks to scanning transmission electron microscopy. Finally, we present a method to view the bone–BG interface in three dimensions using electron tomography.


2015 ◽  
Vol 90 (3) ◽  
pp. 1507-1521 ◽  
Author(s):  
Joshua D. Strauss ◽  
Jason E. Hammonds ◽  
Hong Yi ◽  
Lingmei Ding ◽  
Paul Spearman ◽  
...  

ABSTRACTTetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes.IMPORTANCETetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction.


2007 ◽  
Vol 9 (7) ◽  
pp. 535-541 ◽  
Author(s):  
H. Rösner ◽  
S. Parida ◽  
D. Kramer ◽  
C. A. Volkert ◽  
J. Weissmüller

2003 ◽  
Vol 9 (6) ◽  
pp. 542-555 ◽  
Author(s):  
Matthew Weyland ◽  
Paul A. Midgley

The length scales on which materials microstructures are being formed, grown, and even designed are becoming increasingly small and increasingly three-dimensional. For such complex structures two-dimensional transmission electron microscopy (TEM) analysis is often inadequate and occasionally misleading. One approach to this problem is the modification of electron tomography techniques, developed for structural biology, for use in materials science. Energy-Filtered (EF) TEM elemental distribution images approximate to true projections of structure, and, as such, can be used to reconstruct the three-dimensional distribution of chemical species. A sample holder has been modified to allow the high tilt (±60°) required for tomography and a semiautomatic acquisition script designed to manage energy-loss acquisition. Tilt series data sets have been acquired from two widely different experimental systems, Cr carbides in 316 stainless steel and magnetite nanocrystals in magnetotactic bacteria, demonstrating single- and multiple-element tomography. It is shown that both elemental maps and jump-ratio images are suitable for reconstruction, despite the effects of diffraction contrast in the former and thickness changes in the latter. It is concluded that the image contrast, signal, and signal-to-noise ratio (SNR) are key to the achievable reconstruction quality and, as such, the technique may be of limited value for high energy loss/small inelastic cross section edges.


2006 ◽  
Vol 519-521 ◽  
pp. 1367-1372
Author(s):  
Éric Maire ◽  
Jean Yves Buffière ◽  
R. Mokso ◽  
P. Cloetens ◽  
Wolfgang Ludwig

This paper generally presents different techniques available to image the microstructure of materials in three dimensions (3D) at different scales. It then focuses on the use of the more versatile of these techniques for aluminum alloys : X-ray tomography. The paper describes the recent improvements (spatial and the temporal resolution, grain imaging). Electron tomography is also presented as a promising technique to improve the spatial resolution.


2014 ◽  
Vol 444 (1-3) ◽  
pp. 416-420 ◽  
Author(s):  
V. de Castro ◽  
P. Rodrigo ◽  
E.A. Marquis ◽  
S. Lozano-Perez

Author(s):  
Karen F. Han ◽  
John W. Sedat ◽  
David A. Agard

The main focus of our laboratory is the study of higher order chromatin structure using three dimensional electron microscope tomography. Three dimensional tomography involves the reconstruction of an object by combining multiple projection views of the object at different tilt angles. It is thus imperative to obtain an accurate representation of the projected object mass density to reconstruct the object correctly in three dimensions. Due to the effects of electron-specimen interactions and microscope lens aberrations, image intensities are not always related to the projected mass density in a simple fashion. We are using a variety of techniques to interpret collected images. In previous work, we have analyzed image formation for thick (0.3-0.7um) biological specimens by electron energy loss spectroscopy and imaging, as well as Ewald sphere construction analysis. In this work, we have modified existing techniques to restore images with only three focus levels using the exit surface wave reconstruction as a reference for comparison.


Sign in / Sign up

Export Citation Format

Share Document