Overview on ESD protection design for mixed-voltage I/O interfaces with high-voltage-tolerant power-rail ESD clamp circuits in low-voltage thin-oxide CMOS technology

2007 ◽  
Vol 47 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Ming-Dou Ker ◽  
Wei-Jen Chang
Author(s):  
Kai-Neng Tang ◽  
Seian-Feng Liao ◽  
Ming-Dou Ker ◽  
Hwa-Chyi Chiou ◽  
Yeh-Jen Huang ◽  
...  

1987 ◽  
Vol 65 (8) ◽  
pp. 1003-1008
Author(s):  
P. Kempf ◽  
R. Hadaway ◽  
J. Kolk

The purpose of this work was to study the implementation of high-voltage transistors using standard 3–5 μm complementary metal oxide semiconductor (CMOS) technology with a minimum of additional photolithographic or implant steps. A fabrication process was designed to accommodate a variety of high-voltage transistors with greater than 450 V breakdown voltage and low-voltage CMOS. Extensive use was made of a two-dimensional device model and a one-dimensional process model to determine suitable process parameters. The necessary conditions to produce a high-voltage double-diffused metal oxide semiconductor (DMOS) structure, as well as both n-well and p-well regions for CMOS transistors, and a thick gate oxide required to sustain the full blocking voltage were the main determinants of the process flow. Lateral DMOS (LDMOS), vertical DMOS (VDMOS), conductivity modulated FET (COMFET), and MOS triac (TRIMOS) devices were fabricated on the same chip as standard CMOS transistors using the developed fabrication sequence. This paper includes the results of the process modelling, device design, and electrical measurements.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ruibo Chen ◽  
Hongxia Liu ◽  
Wenqiang Song ◽  
Feibo Du ◽  
Hao Zhang ◽  
...  

Abstract Low-voltage-triggered silicon-controlled rectifier (LVTSCR) is expected to provide an electrostatic discharge (ESD) protection for a low-voltage integrated circuit. However, it is normally vulnerable to the latch-up effect due to its extremely low holding voltage. In this paper, a novel LVTSCR embedded with an extra p-type MOSFET called EP-LVTSCR has been proposed and verified in a 28-nm CMOS technology. The proposed device possesses a lower trigger voltage of ~ 6.2 V and a significantly higher holding voltage of ~ 5.5 V with only 23% degradation of the failure current under the transmission line pulse test. It is also shown that the EP-LVTSCR operates with a lower turn-on resistance of ~ 1.8 Ω as well as a reliable leakage current of ~ 1.8 nA measured at 3.63 V, making it suitable for ESD protections in 2.5 V/3.3 V CMOS processes. Moreover, the triggering mechanism and conduction characteristics of the proposed device were explored and demonstrated with TCAD simulation.


Sign in / Sign up

Export Citation Format

Share Document