scholarly journals Investigation on damaged planar-oxide of 1200 V SiC power MOSFETs in non-destructive short-circuit operation

2017 ◽  
Vol 76-77 ◽  
pp. 500-506 ◽  
Author(s):  
F. Boige ◽  
F. Richardeau ◽  
D. Trémouilles ◽  
S. Lefebvre ◽  
G. Guibaud
Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
Gianpaolo Romano ◽  
Asad Fayyaz ◽  
Michele Riccio ◽  
Luca Maresca ◽  
Giovanni Breglio ◽  
...  

2018 ◽  
Vol 65 (12) ◽  
pp. 5440-5447 ◽  
Author(s):  
Jiaxing Wei ◽  
Siyang Liu ◽  
Lanlan Yang ◽  
Jiong Fang ◽  
Ting Li ◽  
...  

2016 ◽  
Vol 33 (2) ◽  
pp. 94-101
Author(s):  
Kamil Janeczek ◽  
Aneta Arazna ◽  
Konrad Futera ◽  
Grazyna Koziol

Purpose The aim of this paper is to present non-destructive and destructive methods of failure analysis of epoxy moulded IC packages on the example of power MOSFETs in SOT-227 package. Design/methodology/approach A power MOSFET in SOT-227 package was examined twice using X-ray inspection, at first as the whole component to check if it is damaged and then after removing the upper part of package by mechanical grinding. The purpose of the second X-ray inspection was to prepare images for estimation of the total number and approximate location of voids in soft solder layers. Finally, power MOSFETs were subjected to decapsulation process using a concentrated sulphuric acid to verify existence of damage areas noticed during X-ray analysis and to observe other possible failures such as cracks in aluminium metallization or wires deformation. Findings X-ray analysis was revealed to be adequate technique to detect damage (e.g. meltings) in power MOSFETs in SOT-227 package, but only when tested components were analysed in the side view. This type of analysis combined with a graphic software is also suitable for voids estimation in soft solder layers. Moreover, it was found that a single acid (concentrated sulphuric acid) at elevated temperature can be successfully used for decapsulation of power MOSFETs in SOT-227 package without damage of aluminium metallization and aluminium wires. Such decapsulation process enables analysis of defects in wire, die and package materials. Research limitations/implications Further investigations are required to examine if the presented methods of failures analysis can be used for other types of components (e.g. high power resistors) in similar packages. Practical/implications The described methods of failure analysis can find application in electronic industry to select components which are free of damage and in effect which allow to produce high reliable devices. Apart from it, the presented method is applicable to evaluate reasons of improper work of tested electronic devices and to identify faked components. Originality/value This paper contains valuable information for research and technical staff involved in the assessment of electronic devices who needs practical methods of failure analysis of epoxy moulded IC packages.


Sign in / Sign up

Export Citation Format

Share Document