Solving 28 nm I/O circuit reliability issue due to IC design weakness

2018 ◽  
Vol 88-90 ◽  
pp. 246-249 ◽  
Author(s):  
Yi Chao Low ◽  
P.K. Tan ◽  
S.L. Tan ◽  
Y.Z. Zhao ◽  
J. Lam
Author(s):  
H.H. Yap ◽  
P.K. Tan ◽  
G.R. Low ◽  
M.K. Dawood ◽  
H. Feng ◽  
...  

Abstract With technology scaling of semiconductor devices and further growth of the integrated circuit (IC) design and function complexity, it is necessary to increase the number of transistors in IC’s chip, layer stacks, and process steps. The last few metal layers of Back End Of Line (BEOL) are usually very thick metal lines (>4μm thickness) and protected with hard Silicon Dioxide (SiO2) material that is formed from (TetraEthyl OrthoSilicate) TEOS as Inter-Metal Dielectric (IMD). In order to perform physical failure analysis (PFA) on the logic or memory, the top thick metal layers must be removed. It is time-consuming to deprocess those thick metal and IMD layers using conventional PFA workflows. In this paper, the Fast Laser Deprocessing Technique (FLDT) is proposed to remove the BEOL thick and stubborn metal layers for memory PFA. The proposed FLDT is a cost-effective and quick way to deprocess a sample for defect identification in PFA.


Author(s):  
Dongmei Meng ◽  
Joe Rupley ◽  
Chris McMahon

Abstract This paper presents decapsulation solutions for devices bonded with Cu wire. By removing mold compound to a thin layer using a laser ablation tool, Cu wire bonded packages are decapsulated using wet chemical etching by controlling the etch time and temperature. Further, the paper investigates the possibilities of decapsulating Cu wire bonded devices using full wet chemical etches without the facilitation of laser ablation removing much of mold compound. Additional discussion on reliability concerns when evaluating Cu wirebond devices is addressed here. The lack of understanding of the reliability of Cu wire bonded packages creates a challenge to the FA engineer as they must develop techniques to help understanding the reliability issue associated with Cu wire bonding devices. More research and analysis are ongoing to develop appropriate analysis methods and techniques to support the Cu wire bonding device technology in the lab.


Author(s):  
Steve Ferrier ◽  
Kevin D. Martin ◽  
Donald Schulte

Abstract Application of a formal Failure Analysis metaprocess to a stubborn yield loss problem provided a framework that ultimately facilitated a solution. Absence of results from conventional failure analysis techniques such as PEM (Photon Emission Microscopy) and liquid crystal microthermography frustrated early attempts to analyze this low-level supply leakage failure mode. Subsequently, a reorganized analysis team attacked the problem using a specific toplevel metaprocess.(1,a) Using the metaprocess, analysts generated a specific unique step-by-step analysis process in real time. Along the way, this approach encouraged the creative identification of secondary failure effects that provided repeated breakthroughs in the analysis flow. Analysis proceeded steadily toward the failure cause in spite of its character as a three-way interaction among factors in the IC design, mask generation, and wafer manufacturing processes. The metaprocess also provided the formal structure that, at the conclusion of the analysis, permitted a one-sheet summary of the failure's cause-effect relationships and the analysis flow leading to discovery of the anomaly. As with every application of this metaprocess, the resulting analysis flow simply represented an effective version of good failure analysis. The formal and flexible codification of the analysis decision-making process, however, provided several specific benefits, not least of which was the ability to proceed with high confidence that the problem could and would be solved. This paper describes the application of the metaprocess, and also the key measurements and causeeffect relationships in the analysis.


Author(s):  
Zhicheng Wu ◽  
Jacopo Franco ◽  
Brecht Truijen ◽  
Philippe Roussel ◽  
Stanislav Tyaginov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document