Effects of rare earth Ce addition on the microstructure and shear property of Cu/In-50Ag/Cu composite solder joint

2021 ◽  
Vol 127 ◽  
pp. 114385
Author(s):  
Li Yang ◽  
Jian Qiao ◽  
Yaocheng Zhang ◽  
Huiming Gao ◽  
Zengjian Yao ◽  
...  
2012 ◽  
Vol 24 (3) ◽  
pp. 839-847 ◽  
Author(s):  
A. Roshanghias ◽  
A. H. Kokabi ◽  
Y. Miyashita ◽  
Y. Mutoh ◽  
H. R. Madaah Hosseini

2019 ◽  
Vol 6 (11) ◽  
pp. 116328 ◽  
Author(s):  
Yang Liu ◽  
Li Liu ◽  
Ruisheng Xu ◽  
Fenglian Sun ◽  
Dongdong Zhu ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guang Chen ◽  
Yao-Feng Wu

Purpose The purpose of this paper is to investigate the effect of titanium nitride (TiN) on microstructure and composition of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder joints under a large temperature gradient. Design/methodology/approach In this paper, SAC305 lead-free composite solder containing 0.05 Wt.% TiN was prepared by powder metallurgy method. A temperature gradient generator was designed and the corresponding samples were also prepared. The microstructural evolution, internal structure and elemental content of SAC305 and SAC305/TiN solder joints before and after thermal loading were comparatively studied. Findings The experimental results show that the addition of the TiN reinforcing phase can effectively inhibit the diffusion and migration of copper atoms and, therefore, affect the distribution of newly formed Cu-Sn IMC in solder joints under the condition of thermal migration (TM). Compared with the SAC305 solder joint, the interconnection interface and internal structure of the composite solder joint after 600 h of TM are also relatively complete. Originality/value The TiN reinforcing phase is proven effective to mitigate the TM behavior in solder joints under thermal stressing. Specifically, based on the observation and analysis results of microstructure and internal structure of composite solder joint, the TiN particle can change the temperature gradient distribution of the solder joint, so as to suppress the diffusion and migration of Sn and Cu atoms. In addition, the results of Micro-CT and compositional analysis also indicate that the addition of TiN reinforcement is very helpful to maintain the structural integrity and the compositional stability of the solder joint. Different from other ceramic reinforcements, TiN has good thermo- and electro-conductivity and the thermal-electrical performance of composite solder will not be significantly affected by this reinforcement, which is also the main advantage of selecting TiN as the reinforcing phase to prepare composite solder. This study can not only provide preliminary experimental support for the preparation of high reliability lead-free composite solder but also provide a theoretical basis for the subsequent study (such as electro-thermo distribution in solder joints), which has important application significance.


2019 ◽  
Vol 183 ◽  
pp. 108144 ◽  
Author(s):  
Yu-An Shen ◽  
Shiqi Zhou ◽  
Jiahui Li ◽  
Chih-han Yang ◽  
Sijie Huang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2016 ◽  
Vol 700 ◽  
pp. 123-131 ◽  
Author(s):  
Rita Mohd Said ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Izrul Izwan Ramli ◽  
Norhayanti Mohd Nasir ◽  
...  

This work investigated the effects of 1.0 wt. % TiO2 particles addition into Sn-Cu-Ni solder paste to the growth of the interfacial intermetallic compound (IMC) on Cu substrate after isothermal aging. Sn-Cu-Ni solder paste with TiO2 particles were mechanically mixed to fabricate the composite solder paste. The composite solder paste then reflowed in the reflow oven to form solder joint. The reflowed samples were then isothermally aged 75, 125 and 150 ° C for 24 and 240 h. It was found that the morphology of IMCs changed from scallop-shape to a more uniform planar shape in both Sn-Cu-Ni/Cu joints and Sn-Cu-Ni-TiO2 /Cu joint. Cu6Sn5 and Cu3Sn IMC were identified and grew after prolong aging time and temperature. The IMCs thickness and scallop diameter of composite solder paste were reduced and the growth of IMCs thickness after isothermal aging become slower as compared to unreinforced Sn-Cu-Ni solder paste. It is suggested that TiO2 particles have influenced the evolution and retarded the growth of interfacial IMCs.


2005 ◽  
Vol 34 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Bo Li ◽  
Yaowu Shi ◽  
Yongping Lei ◽  
Fu Guo ◽  
Zhidong Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document