Effect of epithelial cell type on in vitro invasion of non-typeable Haemophilus influenzae

2016 ◽  
Vol 129 ◽  
pp. 66-69 ◽  
Author(s):  
Neeraj Kumar Singh ◽  
Dale A. Kunde ◽  
Stephen G. Tristram
1986 ◽  
Vol 84 (1) ◽  
pp. 69-92
Author(s):  
T.D. Oberley ◽  
A.H. Yang ◽  
J. Gould-Kostka

Adult guinea pig glomeruli were grown in vitro either in serum or in a chemically defined medium. Glomeruli were plated either directly into plastic flasks or into plastic flasks that had been coated with the extracellular matrix produced by the PF-HR-9 mouse teratocarcinoma endodermal cell line. Both the composition of the medium and the nature of the culture substrate affected whole glomerular attachment and the type of cells produced in culture. Quantitative studies demonstrated selection of cell types by different culture conditions. Three colony types, each composed of distinctive cell types, could be identified by morphological features. The cells constituting two of these colony types were epithelial in nature, but they were identified as different epithelial types by both histochemical and ultrastructural criteria. Previous studies suggested that one epithelial cell type was derived from the glomerular visceral epithelial cell. This study demonstrates that this cell type could be selectively grown in defined medium on plastic. A second cell type showed several features of renal tubular epithelial cells, including histochemical staining for catalase, cell surface microvilli and cilia, and formation of hemicysts and structures that resembled tubules after prolonged periods in culture. To demonstrate that the ‘glomerulus-derived’ tubular cells were indeed tubular epithelium, we isolated purified renal cortical tubules (greater than 99% pure) and cultured them on the HR-9 matrix in a serum-free chemically defined medium. The resultant outgrowths had morphological properties identical to those of the glomerulus-derived tubular cells. It seems likely that small tubular fragments attached to a minority of the glomeruli are the source of these glomerulus-derived tubular cells. Neither epithelial cell type could be subcultured on plastic, but both could be passaged on the HR-9 matrix. A third cell type, the spindle-shaped cell, was easily propagated on both plastic and the HR-9 matrix. The origin of this cell type is not clear. Our results demonstrate the important effect of culture conditions on the selection, growth and differentiation of kidney cell types in vitro.


1973 ◽  
Vol 36 (5) ◽  
pp. 936-940 ◽  
Author(s):  
R. J. Wordinger ◽  
J. B. Ramsey ◽  
J. F. Dickey ◽  
J. R. Hill

1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


1998 ◽  
Vol 1 (2) ◽  
pp. 134-141 ◽  
Author(s):  
Akemi Yoshikawa ◽  
Ken-ichi Inada ◽  
Takasuke Yamachika ◽  
Nobuyuki Shimizu ◽  
Michio Kaminishi ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3839
Author(s):  
Ryo Koike ◽  
Marni E. Cueno ◽  
Keiko Nodomi ◽  
Muneaki Tamura ◽  
Noriaki Kamio ◽  
...  

Fusobacterium nucleatum (Fn) is generally an opportunistic oral pathogen that adheres to mammalian mucosal sites, triggering a host inflammatory response. In general, Fn is normally found within the human oral cavity; however, it was previously reported that Fn is a risk factor for certain respiratory diseases. Surprisingly, this was never fully elucidated. Here, we investigated the virulence potential of heat-killed Fn on primary human tracheal, bronchial, and alveolar epithelial cells. In this study, we measured the secretion of inflammatory- (IL-8 and IL-6), stress- (total heme and hydrogen peroxide), and cell death-related (caspase-1 and caspase-3) signals. We established that the inflammatory response mechanism varies in each epithelial cell type: (1) along tracheal cells, possible Fn adherence would trigger increased heme secretion and regulated inflammatory response; (2) along bronchial cells, potential Fn adherence would simultaneously initiate an increase in secreted H2O2 and inflammatory response (ascribable to decreased secreted heme amounts); and (3) along alveolar cells, putative Fn adherence would instigate the increased secretion of inflammatory responses attributable to a decrease in secreted heme levels. Moreover, regardless of the epithelial cell-specific inflammatory mechanism, we believe these are putative, not harmful. Taken together, we propose that any potential Fn-driven inflammation along the respiratory tract would be initiated by differing epithelial cell-specific inflammatory mechanisms that are collectively dependent on secreted heme.


Sign in / Sign up

Export Citation Format

Share Document