Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation

2019 ◽  
Vol 165 ◽  
pp. 105692 ◽  
Author(s):  
Julalak C. Ontong ◽  
Supakit Paosen ◽  
Shiv Shankar ◽  
Supayang P. Voravuthikunchai
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ram Prasad ◽  
Vyshnava Satyanarayana Swamy

The unique property of the silver nanoparticles having the antimicrobial activity drags the major attention towards the present nanotechnology. The environmentally nontoxic, ecofriendly, and cost-effective method that has been developed for the synthesis of silver nanoparticles using plant extracts creates the major research interest in the field of nanobiotechnology. The synthesized silver nanoparticles have been characterized by the UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Further, the antibacterial activity of silver nanoparticles was evaluated by well diffusion method, and it was found that the biogenic silver nanoparticles have antibacterial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 27853), Azotobacter chroococcum WR 9, and Bacillus licheniformis (MTCC 9555).


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 217
Author(s):  
Irina Macovei ◽  
Simon Vlad Luca ◽  
Krystyna Skalicka-Woźniak ◽  
Liviu Sacarescu ◽  
Petronela Pascariu ◽  
...  

Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of −10.8 and −14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.


Author(s):  
A S Ningrum ◽  
A P Pridyantari ◽  
W Handayani ◽  
K Secario ◽  
D Djuhana ◽  
...  

2015 ◽  
Vol 6 (5) ◽  
pp. 772-779 ◽  
Author(s):  
Zhentan Lu ◽  
Xinge Zhang ◽  
Zhongyu Li ◽  
Zhongming Wu ◽  
Jia Song ◽  
...  

The AgNPs could adhere to the bacterial membrane through electrostatic force, then damage the bacterial membrane irreversibly and lead to bacterial apoptosis finally.


Sign in / Sign up

Export Citation Format

Share Document