scholarly journals 22-P022 Immunostaining in wholemounts of coelomic vesicles as well as mesenchymal cells with the monoclonal antibody 2d5 for the early archenteron marker in embryos of the starfish Asterina pectinifera

2009 ◽  
Vol 126 ◽  
pp. S335
Author(s):  
Yoshihiro Mezaki ◽  
Yoshihiko K. Maruyama
1989 ◽  
Vol 37 (9) ◽  
pp. 1363-1370 ◽  
Author(s):  
E Stathopoulos ◽  
G S Naeve ◽  
C R Taylor ◽  
A L Epstein

We generated a monoclonal antibody (MAb), designated LN-6, directed against human vimentin, which retains its immunoreactivity in B5-fixed, paraffin-embedded tissues. Like other anti-vimentin MAb, LN-6 was found to be reactive with a wide spectrum of human sarcomas and normal cells of mesenchymal derivation. However, unlike other similar reagents, LN-6 was unreactive with normal and malignant human lymphoid cells and therefore displays a more restricted immunoreactivity. Because of its ability to stain routinely processed pathological tissues and its marked reactivity with human sarcomas, LN-6 is a unique reagent for the immunohistochemical diagnosis of human cancer.


Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 567-573
Author(s):  
D.M. Fekete ◽  
J.P. Brockes

Adult urodele amphibians can regenerate their limbs after amputation by a process that requires the presence of axons at the amputation plane. Paradoxically, if the limb develops in the near absence of nerves (the ‘aneurogenic’ limb) it can subsequently regenerate in a nerve-independent fashion. The growth zone (blastema) of regenerating limbs normally contains progenitor cells whose division is nerve-dependent. A monoclonal antibody that marks these nerve-dependent cells in the normal blastema does not stain the mesenchymal cells of developing limb buds and only stains the amputated limb bud when axons have reached the plane of amputation. This report shows that the blastemal cells of the regenerating aneurogenic limb also fail to react with the antibody in situ. These data suggest that the blastemal cells arising during normal regeneration have been altered by the nerve. This regulation may occur either at the time of amputation (when the antigen is expressed) or during development (when the limb is first innervated).


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 841-854 ◽  
Author(s):  
G. David ◽  
X.M. Bai ◽  
B. Van der Schueren ◽  
P. Marynen ◽  
J.J. Cassiman ◽  
...  

Fibroglycan (syndecan-2) is a member of a family of cell surface heparan sulfate proteoglycans that interact with adhesion molecules, growth factors and a variety of other effector systems that support the shaping, maintenance and repair of an organism. To investigate this apparent redundancy of proteoglycans at the cell surface, we have studied the expression of fibroglycan in the mouse embryo and compared this expression with that of syndecan-1. The characterisation of mouse embryo cDNA clones that crosshybridized to human fibroglycan-cDNA predicted that murine and human fibroglycan were highly similar in structure. Consistently, the analysis of transfectant cells, murine cell lines and embryo extracts indicated that the murine proteoglycan reacted specifically with monoclonal antibody 10H4 developed against the human protein. Fibroglycan, as detected by monoclonal antibody 10H4 in sections of embryonic tissues, occurred exclusively on mesenchymal cells that represented the putative precursors of the hard and connective tissue cells. No fibroglycan was detected in epithelia or in muscle cells. Areas where fibroglycan was particularly abundant were sites of high morphogenetic activity where intense cell-cell and cell-matrix interactions are known to occur (e.g. the epithelial-mesenchymal interfaces, the prechondrogenic and preosteogenic mesenchymal condensations). The expression of fibroglycan was weak in the early embryo, culminated during the morphogenetic phase and at the moment of cell lineage differentiation, and persisted in the perichondrium, periosteum and connective tissue cells. Syndecan-1, in contrast, was primarily detected in epithelia, and transiently in some mesenchymal cells, with mesenchymal localisations that did not or only partially overlap with those of fibroglycan. In situ hybridization analyses confirmed these expression patterns at the transcriptional level, identifying mesenchymal cells as the major source of fibroglycan production. These data indicate that the expression of fibroglycan occurs along unique and developmentally regulated patterns, and suggest that fibroglycan and syndecan-1 may have distinctive functions during tissue morphogenesis and differentiation.


Author(s):  
Douglas R. Keene ◽  
Robert W. Glanville ◽  
Eva Engvall

A mouse monoclonal antibody (5C6) prepared against human type VI collagen (1) has been used in this study to immunolocalize type VI collagen in human skin. The enbloc method used involves exposing whole tissue pieces to primary antibody and 5 nm gold conjugated secondary antibody before fixation, and has been described in detail elsewhere (2).Biopsies were taken from individuals ranging in age from neonate to 65 years old. By immuno-electron microscopy, type VI collagen is found to be distributed as a fine branching network closely associated with (but not attached to) banded collagen fibrils containing types I and III collagen (Fig. 1). It appears to enwrap fibers, to weave between individual fibrils within a fiber, and to span the distance separating fibers, creating a “web-like network” which entraps fibers within deep papillary and reticular dermal layers (Fig. 2). Relative to that in the dermal matrix, the concentration of type VI collagen is higher around endothelial basement membranes limiting the outer boundaries of nerves, capillaries, and fat cells (Fig. 3).


Author(s):  
G.E. Korte ◽  
M. Marko ◽  
G. Hageman

Sodium iodate iv. damages the retinal pigment epithelium (RPE) in rabbits. Where RPE does not regenerate (e.g., 1,2) Muller glial cells (MC) forma subretinal scar that replaces RPE. The MC response was studied by HVEM in 3D computer reconstructions of serial thick sections, made using the STEREC0N program (3), and the HVEM at the NYS Dept. of Health in Albany, NY. Tissue was processed for HVEM or immunofluorescence localization of a monoclonal antibody recognizing MG microvilli (4).


Author(s):  
C. D. Humphrey ◽  
C.S. Goldsmith ◽  
L. Elliott ◽  
S.R. Zaki

An outbreak of unexplained acute pulmonary syndrome with high fatality was recognized in the spring of 1993 in the southwestern United States. The cause of the illness was quickly identified serologically and genetically as a hantavirus and the disease was named hantavirus pulmonary syndrome (HPS). Recently, the virus was isolated from deer mice which had been trapped near the homes of HPS patients, and cultivated in Vero E6 cells. We identified the cultivated virus by negative-stain direct and colloidal gold immune electron microscopy (EM).Virus was extracted, clarified, and concentrated from unfixed and 0.25% glutaraldehyde fixed supernatant fluids of infected Vero E6 cells by a procedure described previously. Concentrated virus suspensions tested by direct EM were applied to glow-discharge treated formvar-carbon filmed grids, blotted, and stained with 0.5% uranyl acetate (UA) or with 2% phosphotungstic acid (PTA) pH 6.5. Virus suspensions for immune colloidal gold identification were adsorbed similarly to filmed grids but incubated for 1 hr on drops of 1:50 diluted monoclonal antibody to Prospect Hill virus nucleoprotein or with 1:50 diluted sera from HPS virus infected deer mice.


1996 ◽  
Vol 26 (3) ◽  
pp. 308-315 ◽  
Author(s):  
H.-D. SHEN ◽  
K. Y. CHUA ◽  
W. L. LIN ◽  
H. L. CHEN ◽  
K.-H. HSIEH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document