scholarly journals In Vivo and Transcriptome-wide Identification of RNA Binding Protein Target Sites

2011 ◽  
Vol 44 (5) ◽  
pp. 828-840 ◽  
Author(s):  
Anna-Carina Jungkamp ◽  
Marlon Stoeckius ◽  
Desirea Mecenas ◽  
Dominic Grün ◽  
Guido Mastrobuoni ◽  
...  
2021 ◽  
Vol 23 (6) ◽  
pp. 664-675
Author(s):  
Ruibao Su ◽  
Li-Hua Fan ◽  
Changchang Cao ◽  
Lei Wang ◽  
Zongchang Du ◽  
...  

2021 ◽  
Vol 53 (2) ◽  
pp. 166-173
Author(s):  
Christopher Y. Park ◽  
Jian Zhou ◽  
Aaron K. Wong ◽  
Kathleen M. Chen ◽  
Chandra L. Theesfeld ◽  
...  

2020 ◽  
Vol 48 (8) ◽  
pp. 4507-4520 ◽  
Author(s):  
Smriti Pandey ◽  
Chandra M Gravel ◽  
Oliver M Stockert ◽  
Clara D Wang ◽  
Courtney L Hegner ◽  
...  

Abstract The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.


2009 ◽  
Vol 181 (4S) ◽  
pp. 153-153 ◽  
Author(s):  
Sabrina Danilin ◽  
Lionel Thomas ◽  
Thomas Charles ◽  
Carole Sourbier ◽  
Véronique Lindner ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
pp. R16 ◽  
Author(s):  
Tsukasa Fukunaga ◽  
Haruka Ozaki ◽  
Goro Terai ◽  
Kiyoshi Asai ◽  
Wataru Iwasaki ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0134751 ◽  
Author(s):  
John A. Gaynes ◽  
Hideo Otsuna ◽  
Douglas S. Campbell ◽  
John P. Manfredi ◽  
Edward M. Levine ◽  
...  

1997 ◽  
Vol 17 (6) ◽  
pp. 3194-3201 ◽  
Author(s):  
R J Buckanovich ◽  
R B Darnell

Nova-1, an autoantigen in paraneoplastic opsoclonus myoclonus ataxia (POMA), a disorder associated with breast cancer and motor dysfunction, is a neuron-specific nuclear RNA binding protein. We have identified in vivo Nova-1 RNA ligands by combining affinity-elution-based RNA selection with protein-RNA immunoprecipitation. Starting with a pool of approximately 10(15) random 52-mer RNAs, we identified long stem-loop RNA ligands that bind to Nova-1 with high affinity (Kd of approximately 2 nM). The loop region of these RNAs harbors a approximately 15-bp pyrimidine-rich element [UCAU(N)(0-2)]3 which is essential for Nova-1 binding. Mutagenesis studies defined the third KH domain of Nova-1 and the [UCAU(N)(0-2)]3 element as necessary for in vitro binding. Consensus [UCAU (N)(0-2)], elements were identified in two neuronal pre-mRNAs, one encoding the inhibitory glycine receptor alpha2 (GlyR alpha2) and a second encoding Nova-1 itself. Nova-1 protein binds these RNAs with high affinity and specificity in vitro, and this binding can be blocked by POMA antisera. Moreover, both Nova-1 and GlyR alpha2 pre-mRNAs specifically coimmunoprecipitated with Nova-1 protein from brain extracts. Thus, Nova-1 functions as a sequence-specific nuclear RNA binding protein in vivo; disruption of the specific interaction between Nova-1 and GlyR alpha2 pre-mRNA may underlie the motor dysfunction seen in POMA.


2013 ◽  
Vol 33 (25) ◽  
pp. 10384-10395 ◽  
Author(s):  
H. Hornberg ◽  
F. Wollerton-van Horck ◽  
D. Maurus ◽  
M. Zwart ◽  
H. Svoboda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document