Identification of bioactive natural compounds as efficient inhibitors against Mycobacterium tuberculosis protein-targets: A molecular docking and molecular dynamics simulation study

2021 ◽  
pp. 117340
Author(s):  
Sravan Kumar Miryala ◽  
Soumya Basu ◽  
Aniket Naha ◽  
Reetika Debroy ◽  
Sudha Ramaiah ◽  
...  
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11171
Author(s):  
Neha Srivastava ◽  
Prekshi Garg ◽  
Prachi Srivastava ◽  
Prahlad Kishore Seth

Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.


2020 ◽  
Author(s):  
Sajal Kumar Halder ◽  
Fatiha Elma

ABSTRACTTuberculosis (TB) continuously pose a major public health concern around the globe, with a mounting death toll of approximately 1.4 million in 2019. The reduced bioavailability, increased toxicity and resistance of several first-line and second-line anti-TB drugs such as isoniazid, ethionamide have necessitated the search for new medications. In this research, we have identified several novel chemical compounds with anti-TB properties using various computational tools like molecular docking analysis, drug-likeness evaluation, ADMET profiling, P450 site of metabolism prediction and molecular dynamics simulation study. This study involves fifty drug-like compounds with antibacterial activity that inhibit InhA and EthR involved in the synthesis of one of the major lipid components, mycolic acid, which is crucial for the viability of Mycobacterium tuberculosis. Among these fifty compounds, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1-carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were found to pass the two-step molecular docking, P450 site of metabolism prediction and pharmacokinetics filtering analysis successfully. Their binding stability for target proteins have been evaluated through RMSD, RMSF, Radius of gyration analysis from 10 ns Molecular Dynamics Simulation (MDS) run. Our identified drugs could be a capable therapeutic for Tuberculosis drug discovery, having said that more in vitro and in vivo testing is required to justify their potential as novel drug and mode of action.


Sign in / Sign up

Export Citation Format

Share Document