In silico based unraveling of New Delhi metallo-β-lactamase (NDM-1) inhibitors from natural compounds: a molecular docking and molecular dynamics simulation study

2019 ◽  
Vol 38 (7) ◽  
pp. 2093-2103 ◽  
Author(s):  
Mashihur Rahman ◽  
Md. Khurshid Alam Khan
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11171
Author(s):  
Neha Srivastava ◽  
Prekshi Garg ◽  
Prachi Srivastava ◽  
Prahlad Kishore Seth

Background & Objectives The massive outbreak of Novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has turned out to be a serious global health issue worldwide. Currently, no drugs or vaccines are available for the treatment of COVID-19. The current computational study was attempted to identify a novel therapeutic inhibitor against novel SARS-CoV-2 using in silico drug discovery pipeline. Methods In the present study, the human angiotensin-converting enzyme 2 (ACE2) receptor was the target for the designing of drugs against the deadly virus. The 3D structure of the receptor was modeled & validated using a Swiss-model, Procheck & Errat server. A molecular docking study was performed between a group of natural & synthetic compounds having proven anti-viral activity with ACE2 receptor using Autodock tool 1.5.6. The molecular dynamics simulation study was performed using Desmond v 12 to evaluate the stability and interaction of the ACE2 receptor with a ligand. Results Based on the lowest binding energy, confirmation, and H-bond interaction, cinnamic acid (−5.20 kcal/mol), thymoquinone (−4.71 kcal/mol), and andrographolide (Kalmegh) (−4.00 kcal/mol) were screened out showing strong binding affinity to the active site of ACE2 receptor. MD simulations suggest that cinnamic acid, thymoquinone, and andrographolide (Kalmegh) could efficiently activate the biological pathway without changing the conformation in the binding site of the ACE2 receptor. The bioactivity and drug-likeness properties of compounds show their better pharmacological property and safer to use. Interpretation & Conclusions The study concludes the high potential of cinnamic acid, thymoquinone, and andrographolide against the SARS-CoV-2 ACE2 receptor protein. Thus, the molecular docking and MD simulation study will aid in understanding the molecular interaction between ligand and receptor binding site, thereby leading to novel therapeutic intervention.


2021 ◽  
Author(s):  
Anand Anbarasu ◽  
Balaji Veeraraghavan ◽  
Karthick Vasudevan ◽  
Soumya Basu ◽  
Amala Arumugam ◽  
...  

Metallo-β-lactamases (MBLs) producing bacteria especially the ones with New Delhi metallo-beta-lactamase-1 (NDM-1) and its variants can potentially hydrolyse all the major β-lactam antibiotics, ultimately escalating anti-microbial resistance world-wide. There is a dearth of approved inhibitors to combat NDM and other MBLs producing bacteria. Hence we focussed to find novel inhibitor(s) in-silico which can potentially suppress the activity of NDM/ MBLs. 2400 compounds were virtually screened to identify a promising carboxylic acid-containing compound (CID-53986787) analogous to NDM antagonist Captopril. Our lead compound can bind adjacent to the active site zinc ions (Zn1 and Zn2) in all highly resistant NDM variants. CID-53986787 possesses ~5-8% higher binding affinity than Captopril, exhibiting molecular interactions with crucial residues that can destabilize the hydrolytic activity of NDM. CID-53986787 was virtually evaluated to ascertain its safe pharmacological/ toxicity profile. Molecular dynamics simulation studies elucidated its stable interaction with the target protein (NDM-1).


Sign in / Sign up

Export Citation Format

Share Document