scholarly journals SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis

2016 ◽  
Vol 9 (7) ◽  
pp. 1051-1065 ◽  
Author(s):  
Souha Berriri ◽  
Sreeramaiah N. Gangappa ◽  
S. Vinod Kumar
Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 733-742 ◽  
Author(s):  
M. Vazquez ◽  
L. Moore ◽  
J.A. Kennison

The trithorax group gene brahma (brm) encodes the ATPase subunit of a chromatin-remodeling complex involved in homeotic gene regulation. We report here that brm interacts with another trithorax group gene, osa, to regulate the expression of the Antennapedia P2 promoter. Regulation of Antennapedia by BRM and OSA proteins requires sequences 5′ to the P2 promoter. Loss of maternal osa function causes severe segmentation defects, indicating that the function of osa is not limited to homeotic gene regulation. The OSA protein contains an ARID domain, a DNA-binding domain also present in the yeast SWI1 and Drosophila DRI proteins. We propose that the OSA protein may target the BRM complex to Antennapedia and other regulated genes.


2019 ◽  
Author(s):  
Magdalena E. Potok ◽  
Yafei Wang ◽  
Linhao Xu ◽  
Zhenhui Zhong ◽  
Wanlu Liu ◽  
...  

AbstractDeposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here identify interacting partners of a conserved Arabidopsis SWR1 subunit, ACTIN-RELATED PROTEIN 6 (ARP6). We isolated nine predicted components, and identified additional interactors implicated in histone acetylation and chromatin biology. One of the novel interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacted with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 was required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 was preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Zhijiang Yan ◽  
Kaitlin McKernan ◽  
Tommy O’Haren ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


2014 ◽  
Vol 42 (14) ◽  
pp. 9074-9086 ◽  
Author(s):  
Ivelina Vassileva ◽  
Iskra Yanakieva ◽  
Michaela Peycheva ◽  
Anastas Gospodinov ◽  
Boyka Anachkova

2004 ◽  
Vol 16 (3) ◽  
pp. 465-477 ◽  
Author(s):  
Zophonı́as O. Jónsson ◽  
Sudhakar Jha ◽  
James A. Wohlschlegel ◽  
Anindya Dutta

2006 ◽  
Vol 235 (10) ◽  
pp. 2722-2735 ◽  
Author(s):  
Binnur Eroglu ◽  
Guanghu Wang ◽  
Naxin Tu ◽  
Xutong Sun ◽  
Nahid F. Mivechi

Sign in / Sign up

Export Citation Format

Share Document