Interaction of Jatrorrhizine with Human Gamma Globulin in membrane mimetic environments: Probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods

2010 ◽  
Vol 980 (1-3) ◽  
pp. 108-113 ◽  
Author(s):  
Li Ying ◽  
Wang Chao ◽  
Lu Guanghua
2019 ◽  
Vol 52 (10) ◽  
pp. 622-632 ◽  
Author(s):  
Jian-Li Liu ◽  
Yu-Chi Kong ◽  
Jing-Yi Miao ◽  
Yong-Lin He ◽  
Ruo-Chen Bi ◽  
...  

Author(s):  
Cyril M. Verbilo ◽  
Alexander V. Zuraev ◽  
Yuri V. Grigoriev ◽  
Vladislav A. Budevich ◽  
Oleg A. Ivashkevich

The target for antibacterial action of 1,4-di- and 1,4,5-trisubstituted 1H-1,2,3-triazoles against E. coli ATCC 25922 and S. aureus ATCC 6538 was proposed. Structures of target proteins and investigated triazoles were built using molecular modeling. Binding mechanism was suggested according to conducted docking studies. Suggested binding models and affinity for a binding site of 1,4-disubstituted 1H-1,2,3-triazoles correlated with their experimental activity. Further functionalization directions for continuation of a search for a novel effective antibacterial agents were discovered.


2019 ◽  
Vol 16 (11) ◽  
pp. 1194-1201 ◽  
Author(s):  
Farhad Saravani ◽  
Ebrahim Saeedian Moghadam ◽  
Hafezeh Salehabadi ◽  
Seyednasser Ostad ◽  
Morteza Pirali Hamedani ◽  
...  

Background: The role of microtubules in cell division and signaling, intercellular transport, and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs. Methods: A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model. Compound 5d as the most active compound was selected for studying of microtubule disruption. Results: Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling study revealed that some derivatives of triazine strongly bind to colchicine binding site. The tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition of tubulin polymerization. Conclusion: The cytotoxicity and molecular modeling study of the synthesized compounds with their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives for development of new anti-cancer agents.


Author(s):  
Balazs Balogh ◽  
Anna Carbone ◽  
Virginia Spanò ◽  
Alessandra Montalbano ◽  
Paola Barraja ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document