MAL: High performance method for loading hydrophobic molecular materials into MCM-41 mesoporous silica – Analysis of confined L-tryptophan by Raman spectroscopy

2022 ◽  
pp. 132383
Author(s):  
Basma Moutamenni ◽  
Nicolas Tabary ◽  
Laurent Paccou ◽  
Yannick Guinet ◽  
Alain Hédoux
RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 37066-37077 ◽  
Author(s):  
Foad Raji ◽  
Alireza Saraeian ◽  
Majid Pakizeh ◽  
Faridreza Attarzadeh

ZnCl2-MCM-41 introduced itself as a high performance sorbent for Pb(ii) removal.


2019 ◽  
Vol 8 (4) ◽  
pp. 6847-6852

The present study describes the synthesis, characterization and application of two mesoporous silica material based coated magnetic nanoparticles namely Fe3O4 -SBA-15 and Fe3O4 -MCM-41 for the simultaneous preconcentration of three selected organophosphorus pesticides (OPPs) namely chlorpyrifos, diazinon and parathion methyl from water samples. The resultant sorbent material was physicochemically and morphologically characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and N2 adsorption analysis. OPPs pesticides extraction efficiency of two sorbents were evaluated through magnetic solid phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detector (HPLC/UV). The main parameters affecting the sorbent efficiency namely extraction time and desorption solvent were optimized. Comparatively, Fe3O4 -SBA-15 achieved excellent percent recovery (97.5%) compared to the Fe3O4 -MCM-41 (87.1%) under optimum condition respectively. The result appealed that the Fe3O4 -SBA-15 composite was efficient sorbent with good capability for the preconcentration of selected OPPs from water samples.AThe present study describes the synthesis, characterization and application of two mesoporous silica material based coated magnetic nanoparticles namely Fe3O4 -SBA-15 and Fe3O4 -MCM-41 for the simultaneous preconcentration of three selected organophosphorus pesticides (OPPs) namely chlorpyrifos, diazinon and parathion methyl from water samples. The resultant sorbent material was physicochemically and morphologically characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and N2 adsorption analysis. OPPs pesticides extraction efficiency of two sorbents were evaluated through magnetic solid phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detector (HPLC/UV). The main parameters affecting the sorbent efficiency namely extraction time and desorption solvent were optimized. Comparatively, Fe3O4 -SBA-15 achieved excellent percent recovery (97.5%) compared to the Fe3O4 -MCM-41 (87.1%) under optimum condition respectively. The result appealed that the Fe3O4 -SBA-15 composite was efficient sorbent with good capability for the preconcentration of selected OPPs from water samples.


2009 ◽  
Vol 126 (1-2) ◽  
pp. 143-151 ◽  
Author(s):  
Fang Na Gu ◽  
Yu Zhou ◽  
Feng Wei ◽  
Ying Wang ◽  
Jian Hua Zhu

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1246
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Mona Stefanakis ◽  
Marc Brecht ◽  
Thomas Chassé ◽  
...  

We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yige Guo ◽  
Bin Chen ◽  
Ying Zhao ◽  
Tianxue Yang

AbstractAntibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g−1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.


2011 ◽  
Vol 143 (1) ◽  
pp. 174-179 ◽  
Author(s):  
Marília R. Mello ◽  
Delphine Phanon ◽  
Gleiciani Q. Silveira ◽  
Philip L. Llewellyn ◽  
Célia M. Ronconi

Sign in / Sign up

Export Citation Format

Share Document