Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes

2011 ◽  
Vol 528 (22-23) ◽  
pp. 6971-6980 ◽  
Author(s):  
T. Sakthivel ◽  
M. Vasudevan ◽  
K. Laha ◽  
P. Parameswaran ◽  
K.S. Chandravathi ◽  
...  
2011 ◽  
Vol 56 (4) ◽  
pp. 955-963 ◽  
Author(s):  
T. Kurşun

Effect of the Gmaw and the Gmaw-P Welding Processes on Microstructure, Hardness, Tensile and Impact Strength of Aisi 1030 Steel Joints Fabricated by ASP316L Austenitic Stainless Steel Filler Metal In this study, medium-carbon steel (AISI 1030) plates of 10 mm thickness, were welded by using the synergic controlled pulsed (GMAW-P) and manual gas metal arc (GMAW) welding techniques. Constant wire feed speed, voltage, welding speed and gas flow rates (3.2 m/min, 22.5 V, 4 mm/s, 16 1/min) and ASP316L austenitic stainless steel filler metal were used in these techniques. The interface appearances of the welded samples were examined by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-Ray diffraction (X-RD). In order to determine mechanical properties of samples, the tensile, impact and microhardness tests were conducted. The GMAW-P joints of AISI 1030 steel couples showed superior tensile strength, less grain growth and narrower heat affected zone (HAZ) when compared with GMAW joints, and this was mainly due to lower heat input, fine fusion zone grain and higher fusion hardness.


2017 ◽  
Vol 62 (4) ◽  
pp. 2125-2131 ◽  
Author(s):  
Z. Brytan

AbstractThe paper presents the results of the basic mechanical properties determined in the static tensile test, impact un-notched Charpy test and hardness of austenitic stainless steel type 316L produced by two techniques: classical pressing and sintering in a vacuum with rapid cooling and selective laser melting (SLM). In this work fracture surface of Charpy test, samples were studied.The results indicate that application of selective laser melting (SLM) makes it possible to double increase the strength properties of components manufactured from austenitic stainless steel type 316L compared to sintering in a vacuum. Resulted in mechanical properties strongly depend on porosity characteristic and the presence of superficial oxides in the case of sintered steel and the character of observed microstructural defects deriving from non-fully melted powder particles and the formation of voids between subsequently melted pool tracks during the SLM.


Sign in / Sign up

Export Citation Format

Share Document