Anomalous hardening behavior accompanied by reordering of plastically deformed Ni3(Si,Ti) intermetallic alloy

2014 ◽  
Vol 610 ◽  
pp. 228-236 ◽  
Author(s):  
Akihiro Hashimoto ◽  
Yasuyuki Kaneno ◽  
Satoshi Semboshi ◽  
Takayuki Takasugi
2010 ◽  
Vol 114 (2) ◽  
pp. 973-979 ◽  
Author(s):  
Amanda Generosi ◽  
Julietta V. Rau ◽  
Vladimir S. Komlev ◽  
Valerio Rossi Albertini ◽  
Alexandr Yu. Fedotov ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1509-1514 ◽  
Author(s):  
Kazushige Ioroi ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

ABSTRACTMechanism for the hardening of two-phase Ni3Al-Ni3V intermetallic alloy to which 2 at.% Ta was added in different substitution manners for Ni, Al and V was presented, based on the microstructural observation, alloying behavior and lattice properties of the additive in the constituent phases. The hardening behavior was explained in terms of solid solution hardening in which the mixture rule in the volume fraction of the two constituent phases and the atomic size misfit evaluated from the changes of the lattice parameters were incorporated. Consequently, the hardening for the alloys in which the additives were substituted for Ni and V was attributed to solid solution hardening. On the other hand, the hardening for the alloy in which the additive was substituted for Al was attributed to the hardening due to microstructural refining in addition to the solid solution hardening.


Author(s):  
J. E. O'Neal ◽  
K. K. Sankaran

Al-Li-Cu alloys combine high specific strength and high specific modulus and are potential candidates for aircraft structural applications. As part of an effort to optimize Al-Li-Cu alloys for specific applications, precipitation in these alloys was studied for a range of compositions, and the mechanical behavior was correlated with the microstructures.Alloys with nominal compositions of Al-4Cu-2Li-0.2Zr, Al-2.5Cu-2.5Li-0.2Zr, and Al-l.5Cu-2.5Li-0.5Mn were argon-atomized into powder at solidification rates ≈ 103°C/s. Powders were consolidated into bar stock by vacuum pressing and extruding at 400°C. Alloy specimens were solution annealed at 530°C and aged at temperatures up to 250°C, and the resultant precipitation was studied by transmission electron microscopy (TEM).The low-temperature (≲100°C) precipitation behavior of the Al-4Cu-2Li-0.2Zr alloy is a combination of the separate precipitation behaviors of Al-Cu and Al-Li alloys. The age-hardening behavior at these temperatures is characteristic of Guinier-Preston (GP) zone formation, with additional strengthening resulting from the coherent precipitation of δ’ (Al3Li, Ll2 structure), the presence of which is revealed by the selected-area diffraction pattern (SADP) shown in Figure la.


2019 ◽  
Vol 9 (6) ◽  
pp. 1349-1356 ◽  
Author(s):  
Johnny Zhu Chen ◽  
Zhenwei Wu ◽  
Xiaoben Zhang ◽  
Slgi Choi ◽  
Yang Xiao ◽  
...  

Identification of a Pt3Bi nanoscale, surface intermetallic alloy catalyst for non-oxidative coupling of methane (NOCM).


2021 ◽  
pp. 160623
Author(s):  
Bo Guan ◽  
Yitao Wang ◽  
Jianbo Li ◽  
Yu Zhang ◽  
Hao Wang ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ken-ichi Fukumoto ◽  
Yoshiki Kitamura ◽  
Shuichiro Miura ◽  
Kouji Fujita ◽  
Ryoya Ishigami ◽  
...  

A set of V–(4–8)Cr–(0–4)Ti alloys was fabricated to survey an optimum composition to reduce the radioactivity of V–Cr–Ti alloys. These alloys were subjected to nano-indenter tests before and after 2-MeV He-ion irradiation at 500 °C and 700 °C with 0.5 dpa at peak damage to investigate the effect of Cr and Ti addition and gas impurities for irradiation hardening behavior in V–Cr–Ti alloys. Cr and Ti addition to V–Cr–Ti alloys for solid–solution hardening remains small in the unirradiated V–(4–8)Cr–(0–4)Ti alloys. Irradiation hardening occurred for all V–Cr–Ti alloys. The V–4Cr–1Ti alloy shows the highest irradiation hardening among all V–Cr–Ti alloys and the gas impurity was enhanced to increase the irradiation hardening. These results may arise from the formation of Ti(CON) precipitate that was produced by He-ion irradiation. Irradiation hardening of V–Cr–1Ti did not depend significantly on Cr addition. Consequently, for irradiation hardening and void-swelling suppression, the optimum composition of V–Cr–Ti alloys for structural materials of fusion reactor engineering is proposed to be a highly purified V–(6–8)Cr–2Ti alloy.


2021 ◽  
Vol 860 ◽  
pp. 158437
Author(s):  
Abbas Ahmadi Siahboumi ◽  
Ahmad Kermanpur ◽  
Fazlollah Sadeghi ◽  
Hamid Reza Ghorbani

Sign in / Sign up

Export Citation Format

Share Document