Effect of Mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy

2016 ◽  
Vol 657 ◽  
pp. 441-452 ◽  
Author(s):  
S.K. Shaha ◽  
F. Czerwinski ◽  
W. Kasprzak ◽  
J. Friedman ◽  
D.L. Chen
2014 ◽  
Vol 891-892 ◽  
pp. 1773-1778
Author(s):  
Toshio Hattori ◽  
Muhammad Amiruddin Bin Ab Wahab ◽  
Minoru Yamashita

Generally the critical distance stress theory was applied for the fatigue limit estimation of general structures using fatigue limit of smooth specimen (σw0), and threshold stress intensity factor range (Kth). In this paper we extended this method for the estimation of low cycle fatigue life too. In this method we define the critical distance (rc) on static strength conditions, which is calculated using ultimate tensile strength (σB) and fracture toughness (KIC), in addition to the critical distance on fatigue limit condition (rc). Then the critical distances of any low cycle fatigue conditions can be calculated by interpolation of critical distance on fatigue limit (rc) with critical distance on static strength (rc). By unifying these low cycle fatigue life estimation method with high cycle fatigue limit estimation method we can estimate the full range fatigue life easily. And to confirm the availability of this estimation method we perform the fatigue test for any stress concentration specimens.s


2011 ◽  
Vol 396-398 ◽  
pp. 326-329 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The paper treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment. Fatigue tests at the temperature of 600oC within the scope of small amount of cycles to failure were carried out for five levels of controlled amplitude of total strain εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The investigated cast steel within the scope of low cycle fatigue life reveals a three-stage course of changes in strength and strain. In the given scope of low cycle fatigue for GP91 cast steel, cyclic weakening was observed without the occurrence of stabilization period of its properties.


Author(s):  
Rongqiao Wang ◽  
Da Li ◽  
Dianyin Hu ◽  
Yang Hai ◽  
Jun Song

Turbine disks in powder metallurgy (PM) superalloy have been widely used in advanced aeroengines. The production of PM superalloy turbine disks involves a series of heat treatment processes, which would inevitably create residual stresses. It has been proved that the low cycle fatigue (LCF) life of the turbine disk is affected by the residual stresses. The computational simulation of heat treatment is considered as an effective way to evaluate the residual stresses in a turbine disk. A finite element software was used to simulate the heat-treatment processes of a FGH95 turbine disk to obtain the residual stress field. To investigate the relaxation of residual stress in FGH95, smooth bar specimens were measured by X-ray diffraction before and after being loaded. Modified by the residual stresses, SWT model is used to predict the low cycle fatigue life of the turbine disk modified by the residual stress field obtained from the simulation of heat treatment. By the comparison between the prediction modified by the residual stress and the prediction without modification, a considerable decrease in low cycle fatigue life is indicated.


2013 ◽  
Vol 51 (5) ◽  
pp. 325-332 ◽  
Author(s):  
Sung Hyuk Park ◽  
Seong-Gu Hong ◽  
Chong Soo Lee ◽  
Ha Sik Kim

2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


1993 ◽  
Vol 42 (481) ◽  
pp. 1153-1159 ◽  
Author(s):  
Kenji HATANAKA ◽  
Junji OHGI ◽  
Fumio UENO

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4237
Author(s):  
Takuma Tanaka ◽  
Togo Sugioka ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Yuya Shimada ◽  
...  

The effect of heat treatment on tensile and low cycle fatigue properties of the oxygen-free copper for electric power equipment was investigated. The heat treatment at 850 °C for 20 min, which corresponds to the vacuum brazing process, caused the grain growth and relaxation of strain by recrystallization, and thus, the residual stress in the oxygen-free copper was reduced. The tensile strength and 0.2% proof stress were decreased, and elongation was increased by the heat treatment accompanying recrystallization. The plastic strain in the heat-treated specimen was increased compared with that in the untreated specimen under the same stress amplitude condition, and thus, the low cycle fatigue life of the oxygen-free copper was degraded by the heat treatment. Striation was observed in the crack initiation area of the fractured surface in the case of the stress amplitude less than 100 MPa regardless of the presence of the heat treatment. With an increase in the stress amplitude, the river pattern and the quasicleavage fracture were mainly observed in the fracture surfaces of the untreated specimens, and they were observed with striations in the fracture surfaces of the heat-treated ones. The result of the electron backscattered diffraction (EBSD) analysis showed that the grain reference orientation deviation (GROD) map was confirmed to be effective to investigate the fatigue damage degree in the grain by low cycle fatigue. In addition, the EBSD analysis revealed that the grains were deformed, and the GROD value reached approximately 28° in the fractured areas of heat-treated specimens after the low cycle fatigue test.


Sign in / Sign up

Export Citation Format

Share Document