Post weld-treatment of laser welded AHSS by application of quenching and partitioning technique

2017 ◽  
Vol 698 ◽  
pp. 174-182 ◽  
Author(s):  
Farnoosh Forouzan ◽  
Esa Vuorinen ◽  
Frank Mücklich
2021 ◽  
Vol 803 ◽  
pp. 140706
Author(s):  
Shan Chen ◽  
Jun Hu ◽  
Lingyu Shan ◽  
Chenchong Wang ◽  
Xianming Zhao ◽  
...  

2021 ◽  
Vol 11 ◽  
pp. 1045-1060
Author(s):  
Ilkka Miettunen ◽  
Sumit Ghosh ◽  
Mahesh C. Somani ◽  
Sakari Pallaspuro ◽  
Jukka Kömi

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1614
Author(s):  
Jonghun Jeong ◽  
Jong Sung Park ◽  
Hoeseok Yang

Recently, the necessity to run high-performance neural networks (NN) is increasing even in resource-constrained embedded systems such as wearable devices. However, due to the high computational and memory requirements of the NN applications, it is typically infeasible to execute them on a single device. Instead, it has been proposed to run a single NN application cooperatively on top of multiple devices, a so-called distributed neural network. In the distributed neural network, workloads of a single big NN application are distributed over multiple tiny devices. While the computation overhead could effectively be alleviated by this approach, the existing distributed NN techniques, such as MoDNN, still suffer from large traffics between the devices and vulnerability to communication failures. In order to get rid of such big communication overheads, a knowledge distillation based distributed NN, called Network of Neural Networks (NoNN), was proposed, which partitions the filters in the final convolutional layer of the original NN into multiple independent subsets and derives smaller NNs out of each subset. However, NoNN also has limitations in that the partitioning result may be unbalanced and it considerably compromises the correlation between filters in the original NN, which may result in an unacceptable accuracy degradation in case of communication failure. In this paper, in order to overcome these issues, we propose to enhance the partitioning strategy of NoNN in two aspects. First, we enhance the redundancy of the filters that are used to derive multiple smaller NNs by means of averaging to increase the immunity of the distributed NN to communication failure. Second, we propose a novel partitioning technique, modified from Eigenvector-based partitioning, to preserve the correlation between filters as much as possible while keeping the consistent number of filters distributed to each device. Throughout extensive experiments with the CIFAR-100 (Canadian Institute For Advanced Research-100) dataset, it has been observed that the proposed approach maintains high inference accuracy (over 70%, 1.53× improvement over the state-of-the-art approach), on average, even when a half of eight devices in a distributed NN fail to deliver their partial inference results.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1556
Author(s):  
Zhao Li ◽  
Run Wu ◽  
Mingwei Li ◽  
Song-Sheng Zeng ◽  
Yu Wang ◽  
...  

High boron steel is prone to brittle failure due to the boride distributed in it with net-like or fishbone morphology, which limit its applications. The Quenching and Partitioning (Q&P) heat treatment is a promising process to produce martensitic steel with excellent mechanical properties, especially high toughness by increasing the volume fraction of retained austensite (RA) in the martensitic matrix. In this work, the Q&P heat treatment is used to improve the inherent defect of insufficient toughness of high boron steel, and the effect mechanism of this process on microstructure transformation and the change of mechanical properties of the steel has also been investigated. The high boron steel as-casted is composed of martensite, retained austensite (RA) and eutectic borides. A proper quenching and partitioning heat treatment leads to a significant change of the microstructure and mechanical properties of the steel. The net-like and fishbone-like boride is partially broken and spheroidized. The volume fraction of RA increases from 10% in the as-cast condition to 19%, and its morphology also changes from blocky to film-like. Although the macro-hardness has slightly reduced, the toughness is significantly increased up to 7.5 J·cm−2, and the wear resistance is also improved.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Migliorini ◽  
Alberto Belussi ◽  
Elisa Quintarelli ◽  
Damiano Carra

AbstractThe MapReduce programming paradigm is frequently used in order to process and analyse a huge amount of data. This paradigm relies on the ability to apply the same operation in parallel on independent chunks of data. The consequence is that the overall performances greatly depend on the way data are partitioned among the various computation nodes. The default partitioning technique, provided by systems like Hadoop or Spark, basically performs a random subdivision of the input records, without considering the nature and correlation between them. Even if such approach can be appropriate in the simplest case where all the input records have to be always analyzed, it becomes a limit for sophisticated analyses, in which correlations between records can be exploited to preliminarily prune unnecessary computations. In this paper we design a context-based multi-dimensional partitioning technique, called CoPart, which takes care of data correlation in order to determine how records are subdivided between splits (i.e., units of work assigned to a computation node). More specifically, it considers not only the correlation of data w.r.t. contextual attributes, but also the distribution of each contextual dimension in the dataset. We experimentally compare our approach with existing ones, considering both quality criteria and the query execution times.


Sign in / Sign up

Export Citation Format

Share Document