Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5

2011 ◽  
Vol 31 (4) ◽  
pp. 762-769 ◽  
Author(s):  
Satadru Kashyap ◽  
Kyle Griep ◽  
John A. Nychka
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1281 ◽  
Author(s):  
Agata Baranowska ◽  
Magdalena Leśniak ◽  
Marcin Kochanowicz ◽  
Jacek Żmojda ◽  
Piotr Miluski ◽  
...  

An investigation of the crystallization kinetics of 45S5 Bioglass® using differential scanning calorimetry is presented in this paper. Thermal analysis was performed using the Friedman method. The activation energy and the Avrami index were calculated. The glass samples were subjected to additional controlled heat treatment at 620 °C in order to obtain bioactive glass-ceramics with enhanced mechanical properties. X-ray powder diffraction (XRD) measurements indicated the formation of the glass-ceramic structures of three cyclosilicates: Na4Ca4(Si6O18) or Na6Ca3(Si6O18) or Na16Ca4(Si12O36). Based on middle infrared region (MIR) results, it can be concluded that the crystalline phase present in the tested materials was Na6Ca3(Si6O18) (combeite). Material was doped with Eu3+ ions, which act as a spectroscopic probe for monitoring the structural changes in the glass matrix. The decreasing value of the fluorescence intensity radio parameter indicated symmetry around the europium ions and, thus, the arrangement of the glass structure. The bioactive properties of the examined glass-ceramics were also determined. The bioactive glass fibers doped with Eu3+ were manufactured using two different methods. Its structural and luminescent properties were examined.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
RFA Bonfim ◽  
VR Chitarra ◽  
RT Gomes ◽  
RD Zacarias ◽  
VR Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document