Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

2012 ◽  
Vol 32 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Cordt Zollfrank ◽  
Kai Gutbrod ◽  
Peter Wechsler ◽  
Josef Peter Guggenbichler
2005 ◽  
Vol 16 (3) ◽  
pp. 192-196 ◽  
Author(s):  
Juliana Vianna Pereira ◽  
Débora Cristina Baldoqui Bergamo ◽  
José Odair Pereira ◽  
Suzelei de Castro França ◽  
Rosemeire Cristina Linhares Rodrigues Pietro ◽  
...  

This study evaluated in vitro the antimicrobial activity of rough extracts from leaves of Arctium lappa and their phases. The following microorganisms, commonly found in the oral cavity, specifically in endodontic infections, were used: Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Candida albicans. The agar-diffusion method allowed detection of the hexanic phase as an inhibitor of microbial growth. Bioautographic assays identified antimicrobial substances in the extract. The results showed the existence, in the rough hexanic phase and in its fractions, of constituents that have retention factors (Rf) in three distinct zones, thereby suggesting the presence of active constituents with chemical structures of different polarities that exhibited specificity against the target microorganisms. It may be concluded that the Arctium lappa constituents exhibited a great microbial inhibition potential against the tested endodontic pathogens.


1993 ◽  
Vol 51 (3) ◽  
pp. 613-632 ◽  
Author(s):  
F. Hueso-Ureña ◽  
M.N. Moreno-Carretero ◽  
M.A. Romero-Molina ◽  
J.M. Salas-Peregrin ◽  
M.P. Sanchez-Sanchez ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Duddi Narendra Nirupama ◽  
Mohan Thomas Nainan ◽  
Rajendran Ramaswamy ◽  
Sethumadhavan Muralidharan ◽  
Hulimangala Hosakote Lingareddy Usha ◽  
...  

Root canal sealers that possess good antimicrobial property can prevent residual and recurrent infection and contribute to successful endodontic therapy. This study evaluated the antimicrobial activity of four endodontic sealers, AH Plus, Tubliseal EWT, EndoRez, and iRoot SP, against three different microorganisms,E. faecalis, C. albicans, andS. aureus, by direct contact test. 10 μL microbial suspensions were allowed to directly contact the four endodontic sealers for 1 hr at 37°C. Subsequently microbial growth was measured spectrophotometrically every 30 min for 18 hours. The microbial suspensions were simultaneously tested to determine the antimicrobial effect of components which are capable of diffusing into the medium. The results revealed that AH Plus and iRootSP had significantly higher antimicrobial activity againstE. faecalis. AH Plus and Tubliseal EWT showed significantly higher antimicrobial activity againstC. albicansandS. aureuscompared to iRoot SP and EndoRez. EndoRez showed the least antimicrobial activity against all the three microorganisms. Inhibition of microbial growth is related to the direct contact of microorganisms with the sealers. In conclusion AH Plus had significantly higher antimicrobial activity againstE. faecalis, C. albicans, andS. aureus.


PHARMACON ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 168
Author(s):  
Sitti N Tunggali ◽  
Herny E. I. Simbala ◽  
Henki Rotinsulu

ABSTRACT Sponge Aaptos aaptos is a marine biota that has great potential, which can be applied, in the pharmaceutical field because of the presence of large compounds in inhibiting microbial growth. This study aims to determine the inhibitory activity of extracts and fractions of sponge Aaptos aaptos on microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. The samples were extracted by maceration with 96 % ethanol and fractioned with n-hexane, choloroform and methanol. Testing is done using the Disc Diffusion Agar method. Crude ethanol extract and fraction of sponge Aaptos aaptos showed the greatest antimicrobial activity against Staphylococcus aureus and categorized as strong, with an average value of 20.32 mm for ethanol extract with strong categories, chloroform fraction 13,28 mm with medium category and methanol fractions 18,48 mm strong category. Keyword: Aaptos aaptos, antimicrobial activity, Escherichia coli, Staphylococcus aureus, Candida albicans.  ABSTRAK Spons Aaptos aaptos merupakan biota laut yang memiliki potensi sebagai antimikroba yang dapat diterapkan di bidang farmasi dengan kandungan senyawa yang besar dalam menghambat pertumbuhan mikroba. Penelitian ini bertujuan untuk mengetahui aktivitas daya hambat dari ekstrak dan fraksi spons Aaptos aaptos terhadap pertumbuhan mikroba Escherichia coli, Staphylococcus aureus, dan Candida albicans. Sampel diekstraksi secara maserasi dengan etanol dan difraksinasi dengan pelarut n–heksan, kloroform dan metanol. Pengujian dilakukan dengan menggunakan metode Disc Diffusion Agar. Ekstrak kasar etanol dan fraksi dari Spons Aaptos aaptos menunjukkan aktivitas antimikroba paling besar terhadap Staphylococcus aureus dan dikategorikan kuat, dengan nilai rata – rata 20,32 mm untuk ekstrak etanol dengan kategori kuat, fraksi kloroform 13,28 mm, kategori sedang dan fraksi metanol 18,48 mm kategori kuat.Kata Kunci : Aaptos aaptos, aktivitas antimikroba, Escherichia coli, Staphylococcus aureus, Candida albicans


2003 ◽  
Vol 52 (8) ◽  
pp. 428-435
Author(s):  
Shigetoshi Kobuchi ◽  
Eiko Okamoto ◽  
Rinji Akada ◽  
Makoto Kumata ◽  
Yusuke Todoroki

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1676 ◽  
Author(s):  
Mansab Ali Saleemi ◽  
Mohammad Hosseini Fouladi ◽  
Phelim Voon Chen Yong ◽  
Eng Hwa Wong

Microorganisms have begun to develop resistance because of inappropriate and extensive use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have attracted growing attention because of their remarkable mechanical strength, electrical properties, and chemical and thermal stability for their potential applications in the field of biomedical as therapeutic and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not been fully investigated. The primary purpose of this research study is to investigate the antimicrobial activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types (double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate (SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration 0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with the microbial cells. The antimicrobial activity was determined by analyzing optical density growth curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to double-walled CNTs against selected pathogens.


Sign in / Sign up

Export Citation Format

Share Document