scholarly journals Elucidation of Antimicrobial Activity of Non-Covalently Dispersed Carbon Nanotubes

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1676 ◽  
Author(s):  
Mansab Ali Saleemi ◽  
Mohammad Hosseini Fouladi ◽  
Phelim Voon Chen Yong ◽  
Eng Hwa Wong

Microorganisms have begun to develop resistance because of inappropriate and extensive use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have attracted growing attention because of their remarkable mechanical strength, electrical properties, and chemical and thermal stability for their potential applications in the field of biomedical as therapeutic and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not been fully investigated. The primary purpose of this research study is to investigate the antimicrobial activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types (double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate (SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration 0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with the microbial cells. The antimicrobial activity was determined by analyzing optical density growth curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to double-walled CNTs against selected pathogens.

2009 ◽  
Vol 20 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Cláudia Ramos Pinheiro ◽  
Adriana Simionatto Guinesi ◽  
Antônio Carlos Pizzolitto ◽  
Idomeo Bonetti-Filho

Using the agar diffusion method, this study evaluated the in vitro antimicrobial activity of the commercial endodontic sealers Acroseal and Epiphany, a castor-oil based experimental sealer, Polifil, and a primer agent (Epiphany self-etching primer), against Enterococcus faecalis. Zinc oxide and eugenol cement (ZOE) served as control. Five wells per dish were made at equidistant points and immediately filled with the test and control materials. After incubation of the dishes at 37ºC for 24 h and 48 h, the diameter of the zones of microbial growth inhibition produced around the wells was measured (in mm) with a millimeter rule. After 48 h, the diameters of the zones of microbial growth inhibition were the same as those observed at 24 h, only the substances continued to diffuse. Epiphany and Polifil did not show antibacterial activity (no formation of zones of microbial growth inhibition). The primer produced the largest zones of inhibition (17.62 mm) followed by Acroseal (7.25 mm) and ZOE (7.12 mm). E. faecalis was resistant to Epiphany and Polifil, while the primer and Acroseal sealer were effective against this microorganism under the tested conditions.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2908
Author(s):  
Kazuo Umemura ◽  
Ryo Hamano ◽  
Hiroaki Komatsu ◽  
Takashi Ikuno ◽  
Eko Siswoyo

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.


2021 ◽  
Author(s):  
Jade Chen ◽  
Su Su Soe San ◽  
Amelia Kung ◽  
Michael Tomasek ◽  
Dakai Liu ◽  
...  

AbstractIncreasing global travel and changes in the environment may increase the frequency of contact with a natural host carrying an infection, and therefore increase our chances of encountering microorganisms previously unknown to humans. During an emergency (man-made, natural disaster, or pandemic), the etiology of infection might be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs might not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency is determined by the microbial growth inhibition and compared to conventional antimicrobial susceptibility testing (AST) results. The oligonucleotide probe pairs on the sensor were designed to target gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A total of 10 remnant clinical specimens from the CLIA labs of New York-Presbyterian Queens were tested, resulting in 100% categorical agreement with reference AST methods (Vitek and broth microdilution method). The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.


2015 ◽  
Vol 327 ◽  
pp. 504-516 ◽  
Author(s):  
D. Nithyadevi ◽  
P. Suresh Kumar ◽  
D. Mangalaraj ◽  
N. Ponpandian ◽  
C. Viswanathan ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Liu ◽  
Chunli Guo ◽  
Xiaojian Ma ◽  
Changhui Sun ◽  
Fengxia Li ◽  
...  

Multiwalled carbon nanotubes filled with MgO nanorods were synthesized through the reaction of ethanol and Mg powder in the presence ofTiO2at 400C°. X-ray powder diffraction indicated that the sample was composed of graphite and cubic MgO. Transmission electron microscopy studies showed that multi-walled CNTs with the outer diameters of 70–130 nm were filled with discontinuous MgO nanorods whose diameter was in the range of 25–40 nm. The ratios of the band intensities(ID/IG=0.67)in Raman spectrum implied that carbon nanotubes had good crystallinity. The influence of correlative reaction factors on the morphology of the sample and the possible formation mechanism were discussed.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 407-411
Author(s):  
JUN JIAO ◽  
LIFENG DONG ◽  
VACHARA CHIRAYOS ◽  
JOCELYN BUSH ◽  
JAMES HEDBERG

Two effective methods for dispersion and alignment of single-walled carbon nanotubes (SWCNTs) were developed. One is the floating-potential dielectrophoresis (FPD) method, which can achieve the alignment of individual SWCNTs between two electrodes with high yield (more than 30%) and high repeatability. The second is the gas blow method. Using the shear forces associated with a rapidly moving fluid, SWCNTs were positioned in a direction corresponding to the flow vector of the fluid. This technique shows great potential for scaling up the displacement of SWCNTs with controlled orientations. Various dispersion agents including ethanol, dichlorobenzene, sodium dodecyl sulfate (SDS) and DNA were investigated with these two methods. It was found that SDS was the most effective dielectric medium used for FPD dispersion and alignment of SWCNTs. The result of electric measurement for the individual SWCNTs aligned between two electrodes suggests that, using the FPD method, both metallic and semiconducting SWCNTs could be aligned between the electrodes. The individual SWCNT resistances measured range from 20 KΩ to 5 MΩ suggesting a high contact resistance between an aligned SWCNT and metal electrodes. High resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterization reveal DNA molecules wrapped around the SWNCTs after the dispersion process which may affect the intrinsic properties of SWCNTs.


Sign in / Sign up

Export Citation Format

Share Document