Synergistic effect of functionalized poly( -lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro

2019 ◽  
Vol 103 ◽  
pp. 109851 ◽  
Author(s):  
Wenjun Liu ◽  
Ziping Zou ◽  
Lin Zhou ◽  
Hua Liu ◽  
Wei Wen ◽  
...  
2010 ◽  
Vol 26 (8) ◽  
pp. 754-758 ◽  
Author(s):  
Weizhong Yang ◽  
Guangfu Yin ◽  
Dali Zhou ◽  
Jianwen Gu ◽  
Yadong Li ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 687-691 ◽  
Author(s):  
Masazumi Okido ◽  
Ryoichi Ichino ◽  
Kotaro Kuroda

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp), carbonated HAp and titanium oxide are of interest for bone-interfacing implant applications, because of their demonstrated osteoconductive properties. They were coated on the titanium implants and investigated the in vitro and in vivo performance. HAp coatings were performed by the thermal substrate method in aqueous solutions. Titanium oxide film was also formed on the titanium implants by gaseous oxidation, or by anodizing in the acidic solution. All the specimens covered with HAp, carbonated HAp or TiO2 (rutile or anatase). were characterized by XRD, EDX, FT-IR and SEM. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the osseointegration was evaluated from the rod specimens implanted in rats femoral for up to 8 weeks. In in vivo evaluations two weeks postimplantation, new bone formed on the coated and non-coated titanium rods in the cancellous bone and cortical bone, respectively. Bone-implant contact ratio, in order to evaluate of new bone formation, was significantly depended on the compound formed on the titanium implant.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi Sun ◽  
Lujuan Gao ◽  
Youwen Zhang ◽  
Ji Yang ◽  
Tongxiang Zeng

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xiaonan Xi ◽  
Ning Liu ◽  
Qianqian Wang ◽  
Yahui Chu ◽  
Zheng Yin ◽  
...  

Abstract PAI-1 plays significant roles in cancer occurrence, relapse and multidrug resistance and is highly expressed in tumours. ACT001, which is currently in phase I clinical trials for the treatment of glioblastoma (GBM). However, the detailed molecular mechanism of ACT001 is still unclear. In this study, we investigated the effects of ACT001 on glioma cell proliferation and clarified its mechanism. We discovered that PAI-1 was the direct target of ACT001 by a cellular thermal shift assay. Then, the interaction between ACT001 and PAI-1 was verified by Biacore assays, thermal stability assays and ACT001 probe assays. Furthermore, from the proteomic analysis, we found that ACT001 directly binds PAI-1 to inhibit the PI3K/AKT pathway, which induces the inhibition of glioma cell proliferation, invasion and migration. Moreover, the combination of ACT001 and cisplatin showed a synergistic effect on the inhibition of glioma in vitro and in vivo. In conclusion, our findings demonstrate that PAI-1 is a new target of ACT001, the inhibition of PAI-1 induces glioma inhibition, and ACT001 has a synergistic effect with cisplatin through the inhibition of the PAI-1/PI3K/AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document