Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction

2018 ◽  
Vol 16 ◽  
pp. 300-306 ◽  
Author(s):  
Christophe Baley ◽  
Marine Lan ◽  
Alain Bourmaud ◽  
Antoine Le Duigou
2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Abdul Hakim Abdullah ◽  
Afiqah Azharia ◽  
Farrahshaida Mohd Salleh

Natural fibres have been known of its good acoustic damping properties and therefore, these materials could be used as a sound insulation in many applications. The main purpose of this investigation is to analyze the sound absorption coefficient of sugarcane baggase fibre, banana fibre and its hybrid based composites under various fibre volume fractions. Bone dry test specimens of 10%, 20% and 30% fibre volume fraction were treated with sodium hydroxide (NaOH) prior to composites fabrication using polyester as binder. The pre-tested specimens were examined using scanning electron microscope and electronic analytical balance to analyze physical and dimension characteristic. The sound absorption frequencies were measured using by the two-microphone transfer function technique in the impedance tube that has a 100 mm diameter for low frequency and 28 mm for high frequency, 0 Hz to 4000 Hz respectively. The result indicated that in low and high frequency, the combination of different natural fibres produced better sound absorption coefficient rather than using the natural fibre as individual. The results also demonstrated that the higher amounts of fibre volume fraction are affecting frequencies broadening, hence promising better sound absorbing capacity. 


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 107 ◽  
Author(s):  
Jens Bachmann ◽  
Martin Wiedemann ◽  
Peter Wierach

Can a hybrid composite made of recycled carbon fibres and natural fibres improve the flexural mechanical properties of epoxy composites compared to pure natural fibre reinforced polymers (NFRP)? Growing environmental concerns have led to an increased interest in the application of bio-based materials such as natural fibres in composites. Despite their good specific properties based on their low fibre density, the application of NFRP in load bearing applications such as aviation secondary structures is still limited. Low strength NFRP, compared to composites such as carbon fibre reinforced polymers (CFRP), have significant drawbacks. At the same time, the constantly growing demand for CFRP in aviation and other transport sectors inevitably leads to an increasing amount of waste from manufacturing processes and end-of-life products. Recovering valuable carbon fibres by means of recycling and their corresponding re-application is an important task. However, such recycled carbon fibres (rCF) are usually available in a deteriorated (downcycled) form compared to virgin carbon fibres (vCF), which is limiting their use for high performance applications. Therefore, in this study the combination of natural fibres and rCF in a hybrid composite was assessed for the effect on flexural mechanical properties. Monolithic laminates made of hybrid nonwoven containing flax fibres and recycled carbon fibres were manufactured with a fibre volume fraction of 30% and compared to references with pure flax and rCF reinforcement. Three-point bending tests show a potential increase in flexural mechanical properties by combining rCF and flax fibre in a hybrid nonwoven.


2011 ◽  
Vol 410 ◽  
pp. 114-117 ◽  
Author(s):  
S. Rao ◽  
A. Bhardwaj ◽  
Andrew Beehag ◽  
Debes Bhattacharyya

In the current age of growing environmental awareness, natural fibre composites have gained wide acceptance in various facets of engineering. However, in industries, such as aerospace and mining, their acceptance is primarily dependent on them meeting the stringent fire test requirements. In this paper, symmetric laminates consisting of only glass, glass/flax hybrid and only flax as reinforcements in thermoset matrices were tested for their time to ignition, heat release rate and smoke constituents as per standard ASTM E 1354 in a cone calorimeter. Four fire retardant versions of resin systems, were used in this study. The laminates were manufactured using wet hand-layup technique that was vacuum bagged and cured between hot platens of a hydraulic press. A constant fibre volume fraction of 0.5 for all the laminates was obtained by maintaining a constant laminate thickness of 4mm. The results from the cone calorimeter tests were compared to examine the influence of natural fibres on the fire properties of the laminates. It was observed that the degree of fire retardance in the polyester based composites decreased with the increase in the flax fibre content; however, in the modified urethane composites, flax fibre composites performed better by exhibiting higher ignition time compared to the hybrid and glass fibre composites. Another important observation was that the carbon monoxide emissions during testing decreased with the increase in flax content in the composites, no matter what resin system was used. These preliminary tests suggest that, by judiciously incorporating natural fibres in a synthetic system, a hybrid system could be designed to sustain loads in environments with high fire risks.


2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2013 ◽  
Vol 746 ◽  
pp. 385-389
Author(s):  
Li Yan Liu ◽  
Yu Ping Chen ◽  
Jing Zhu

This paper is aiming to develop the cattail fibre as reinforcing material due to its environmental benefits and excellent physical and insulated characteristics. The current work is concerned with the development of the technical fibres from the original plant and research on their reinforcing properties in the innovative composites. Polypropylene (PP) fibre was used as matrix in this research which was fabricated into fibre mats with cattail fibre together with different fibre volume fractions. Cattail fibre reinforced PP laminates were manufactured and compared with jute/PP composites. The tensile and bending properties of laminates were tested. The SEM micrographs of fracture surface of the laminates were analyzed as well. The results reveal that the tensile and bending properties of cattail/PP laminates are closed to those of jute/PP composites. The mechanical properties of cattail/jute/PP laminates with fibre volume fraction of 20/35/45 is betther than those of laminate reinforced with cattail fibers.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Kaleem A. Zaidi ◽  
Umesh K. Sharma ◽  
N. M. Bhandari ◽  
P. Bhargava

HSC normally suffers from low stiffness and poor strain capacity after exposure to high temperature. High strength confined fibrous concrete (HSCFC) is being used in industrial structures and other high rise buildings that may be subjected to high temperature during operation or in case of an accidental fire. The proper understanding of the effect of elevated temperature on the stress-strain relationship of HSCFC is necessary for the assessment of structural safety. Further stress-strain model of HSCFC after exposure to high temperature is scarce in literature. Experimental results are used to generate the complete stress-strain curves of HSCFC after exposure to high temperature in compression. The variation in concrete mixes was achieved by varying the types of fibre, volume fraction of fibres, and temperature of exposure from ambient to 800°C. The degree of confinement was kept constant in all the specimens. A comparative assessment of different models on the high strength confined concrete was also conducted at different temperature for the accuracy of proposed model. The proposed empirical stress-strain equations are suitable for both high strength confined concrete and HSCFC after exposure to high temperature in compression. The predictions were found to be in good agreement and well fit with experimental results.


AVIA ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
A Z Dwi ◽  
H Syamsudin

Hand lay-up method is frequently used by small companies. It is due to its flexibility and low-cost considerations. One of the qualities problems that normally arises is the product unevenness. This study was carried out to analyse this variation on manufacturing E-glass/epoxy plates specimen and propeller product. Void and fibre volume fraction of manufactured plates are measured based on ASTM-D2734. Propellers of LSU-03 aircraft were manufactured and analysed to find out the uniformity of the product in terms of its mass and size. To determine product compatibility with the design, the geometry and the thickness were measured at several points of propeller. In addition to this, a balancing process is carried out to find out the mass balance point.


Sign in / Sign up

Export Citation Format

Share Document