scholarly journals Insulation Characteristics of Sisal Fibre/Epoxy Composites

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.

Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 107 ◽  
Author(s):  
Jens Bachmann ◽  
Martin Wiedemann ◽  
Peter Wierach

Can a hybrid composite made of recycled carbon fibres and natural fibres improve the flexural mechanical properties of epoxy composites compared to pure natural fibre reinforced polymers (NFRP)? Growing environmental concerns have led to an increased interest in the application of bio-based materials such as natural fibres in composites. Despite their good specific properties based on their low fibre density, the application of NFRP in load bearing applications such as aviation secondary structures is still limited. Low strength NFRP, compared to composites such as carbon fibre reinforced polymers (CFRP), have significant drawbacks. At the same time, the constantly growing demand for CFRP in aviation and other transport sectors inevitably leads to an increasing amount of waste from manufacturing processes and end-of-life products. Recovering valuable carbon fibres by means of recycling and their corresponding re-application is an important task. However, such recycled carbon fibres (rCF) are usually available in a deteriorated (downcycled) form compared to virgin carbon fibres (vCF), which is limiting their use for high performance applications. Therefore, in this study the combination of natural fibres and rCF in a hybrid composite was assessed for the effect on flexural mechanical properties. Monolithic laminates made of hybrid nonwoven containing flax fibres and recycled carbon fibres were manufactured with a fibre volume fraction of 30% and compared to references with pure flax and rCF reinforcement. Three-point bending tests show a potential increase in flexural mechanical properties by combining rCF and flax fibre in a hybrid nonwoven.


2013 ◽  
Vol 22 (1) ◽  
pp. 096369351302200 ◽  
Author(s):  
Mehmet Aktas ◽  
H. Ersen Balcioğlu ◽  
Gürhan Külahli

The main purpose of this study was to investigate the tensile and compressive behaviour of woven-knitting glass/epoxy composites under low strain rate by using UTEST testing machine with capacity of 50kN. The strain rate values were selected as 0.005, 0.0005 and 0.00005s−1. The effect of knitting direction as wale, course and 45° and knitting structure as rib and milano on the tensile and compressive behaviour of woven-knitting glass/epoxy composites under low strain rate was also discussed. The woven-knitting composite samples were tested under uni-axial tensile and compressive loading. The woven-knitting composites have eight layer with woven fabric (W), rib (R) and milano (M) knitting fabrics as (W2/R2)S and (W2/M2)S. The woven-knitting composites were manufactured by hand lay-up method. The fibre volume fraction and thickness of manufactured woven-knitting composites were measured 65% in weight and 2.9mm, respectively. The experimental results showed that the tensile and compressive properties of woven-knitting glass/epoxy composites decrease from 0.005 s−1 to 0.00005s−1. The tensile properties in all directions of plate with rib knitting were obtained higher than the plate with milano knitting. However, the highest compressive properties were obtained from plate with rib knitting in course direction.


2011 ◽  
Vol 332-334 ◽  
pp. 735-738 ◽  
Author(s):  
Li Yan Liu ◽  
Yong Liang Han ◽  
Fei Zhang

This paper is aiming to research the impact behavior of flax fiber reinforced PP laminates considering the end use of the products. Flax yarn and Polypropylene (PP) filaments were twisted together with three fiber volume fraction 0.45, 0.50 and 0.60 to form the commingled yarns which were woven into fabrics as prepreg with plain and twill structures respectively. The prepregs of different layers were pressed into flax reinforced PP composites in the process of hot-pressing. The laminates with different fiber volume fraction, layer, and woven structure were tested and analyzed respectively aiming at the impact resistibility in succession. SEM micrograph of the impact fracutured surface was observed and analyzed as well. The results reveal that the impact properties of laminates with twill structures are prior to those of laminates with plain structures when other technical parameters are the same. The ability of impact resistibility of flax reinforced PP laminates improves with the increase of the fibre volume fraction, layer amount and impact velocity respectively in this research.


2016 ◽  
Vol 865 ◽  
pp. 135-140 ◽  
Author(s):  
Martina Drdlová ◽  
Radek Řídký ◽  
René Čechmánek

The effect of fibre type and fibre amount on physico-mechanical properties of slurry infiltrated fibre concrete (SIFCON) at both quasi-static and dynamic load was evaluated experimentally. SIFCON is a special type of cement-based composite with high fibre volume fraction, extremely strong and ductile. Test specimens were prepared with 7 types of steel fibres (with different shape and mechanical parameters) in four volume fractions (7.5-15 vol. %). High performance fibre-reinforced concrete (HPFRC) has also been cast and tested for comparison purposes. The impact test has been carried out by using an in-house manufactured impact testing machine based on drop test principle. The test results revealed that SIFCON slab with 15 vol. % fibre content exhibits superior energy-absorption characteristics when compared to other slab specimens. Diameter of the fibres plays an important role for both strength and energy absorption capacity of SIFCON - using of low-diameter fibres with higher aspect ratio leads to the best results.


2007 ◽  
Vol 15 (7) ◽  
pp. 507-519 ◽  
Author(s):  
A.L. Jeswani ◽  
J.A. Roux

This study seeks to improve the wet-out and thus the quality of the pultruded part in the tapered injection pultrusion process. Complete wet-out of the dry fibre reinforcement by the liquid resin depends strongly on the processing parameters. Process parameters modelled were: fibre pull speed, fibre volume fraction and resin viscosity. In this work a 3-D finite volume technique was developed to simulate the flow of polyester resin through the glass rovings. The results show the impact of the tapering of the injection chamber walls on the minimum injection pressure necessary to achieve complete fibre matrix wet-out and the resin pressure at the injection chamber exit. Important chamber design information is presented.


2018 ◽  
Vol 49 (9) ◽  
pp. 1233-1251 ◽  
Author(s):  
G Rajeshkumar

This paper represents the first effort aimed to study the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites fabricated by compression moulding technique. The investigation was carried out by varying the fibre length (10, 20 and 30 mm), fibre volume fraction (10%, 20%, 30%, 40% and 50%), concentration of sodium hydroxide for fibre treatment (5%, 10% and 15%) and immersion temperature (10℃, 30℃ and 60℃). The fibre–matrix interface and failure mechanism was studied by using scanning electron microscopy. The results revealed that the moisture absorption rate increased with the increase in fibre length, fibre volume fraction and immersion temperature result in loss of tensile and flexural properties. The moisture absorbed samples shows 15% and 7% drop in tensile and flexural strength, respectively. However, this loss was less in mercerized fibre-reinforced composites.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Abdul Hakim Abdullah ◽  
Afiqah Azharia ◽  
Farrahshaida Mohd Salleh

Natural fibres have been known of its good acoustic damping properties and therefore, these materials could be used as a sound insulation in many applications. The main purpose of this investigation is to analyze the sound absorption coefficient of sugarcane baggase fibre, banana fibre and its hybrid based composites under various fibre volume fractions. Bone dry test specimens of 10%, 20% and 30% fibre volume fraction were treated with sodium hydroxide (NaOH) prior to composites fabrication using polyester as binder. The pre-tested specimens were examined using scanning electron microscope and electronic analytical balance to analyze physical and dimension characteristic. The sound absorption frequencies were measured using by the two-microphone transfer function technique in the impedance tube that has a 100 mm diameter for low frequency and 28 mm for high frequency, 0 Hz to 4000 Hz respectively. The result indicated that in low and high frequency, the combination of different natural fibres produced better sound absorption coefficient rather than using the natural fibre as individual. The results also demonstrated that the higher amounts of fibre volume fraction are affecting frequencies broadening, hence promising better sound absorbing capacity. 


Sign in / Sign up

Export Citation Format

Share Document