scholarly journals On the use of instrumented indentation to characterize the mechanical properties of functionally graded binary alloys manufactured by additive manufacturing

2020 ◽  
Vol 25 ◽  
pp. 101451
Author(s):  
C. Schneider-Maunoury ◽  
A. Albayda ◽  
O. Bartier ◽  
L. Weiss ◽  
G. Mauvoisin ◽  
...  
Author(s):  
Yuen-Shan Leung ◽  
Huachao Mao ◽  
Yong Chen

Functionally graded materials (FGM) possess superior properties of multiple materials due to the continuous transitions of these materials. Recent progresses in multi-material additive manufacturing (AM) processes enable the creation of arbitrary material composition, which significantly enlarges the manufacturing capability of FGMs. At the same time, the fabrication capability also introduces new challenges for the design of FGMs. A critical issue is to create the continuous material distribution under the fabrication constraints of multi-material AM processes. Using voxels to approximate gradient material distribution could be one plausible way for additive manufacturing. However, current FGM design methods are non-additive-manufacturing-oriented and unpredictable. For instance, some designs require a vast number of materials to achieve continuous transitions; however, the material choices that are available in a multi-material AM machine are rather limited. Other designs control the volume fraction of two materials to achieve gradual transition; however, such transition cannot be functionally guaranteed. To address these issues, we present a design and fabrication framework for FGMs that can efficiently and effectively generate printable and predictable FGM structures. We adopt a data-driven approach to approximate the behavior of FGM using two base materials. A digital material library is constructed with different combinations of the base materials, and their mechanical properties are extracted by Finite Element Analysis (FEA). The mechanical properties are then used for the conversion process between the FGM and the dual material structure such that similar behavior is guaranteed. An error diffusion algorithm is further developed to minimize the approximation error. Simulation results on four test cases show that our approach is robust and accurate, and the framework can successfully design and fabricate such FGM structures.


2020 ◽  
Vol 846 ◽  
pp. 110-116
Author(s):  
Akash Mukhopadhyay ◽  
Probir Saha

Additive Friction Stir (AFS) has the potential for extensive future application in metal based additive manufacturing. Powder based AFS is specifically useful for fabricating functionally graded structures. But, the consolidation of powder inside the hollow tool used in this operation hinders the powder based AFS process. This problem could be resolved by Additive Friction Stir Processing (AFSP) while maintaining the key advantages of AFS. A 3D deposit structure of height 5 mm and width 64 mm was made from Al6061 alloy powder by AFSP. Mechanical properties like ultimate tensile strength, yield strength and micro-hardness of the deposit were evaluated in both longitudinal and transverse directions. The ultimate tensile strength and micro-hardness of the deposit were comparable to Al6061-O and there was a significant increment in tensile yield strength. Also, the isotropic nature of the deposit could be inferred from similar mechanical properties in the longitudinal and transverse direction. Dimple ruptures seen in fractographic analysis gave evidence to the ductile nature of the deposit.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Sign in / Sign up

Export Citation Format

Share Document