Body-centered-cubic to face-centered-cubic phase transformation of iron under compressive loading along [100] direction

2021 ◽  
Vol 26 ◽  
pp. 101961
Author(s):  
Hongxian Xie ◽  
Tong Ma ◽  
Tao Yu ◽  
Fuxing Yin
2004 ◽  
Vol 19 (6) ◽  
pp. 1696-1702 ◽  
Author(s):  
X. Zhang ◽  
A. Misra ◽  
R.K. Schulze ◽  
C.J. Wetteland ◽  
H. Wang ◽  
...  

Bulk austenitic stainless steels (SS) have a face-centered cubic (fcc) structure. However, sputter deposited films synthesized using austenitic stainless steel targets usually exhibit body-centered cubic (bcc) structure or a mixture of fcc and bcc phases. This paper presents studies on the effect of processing parameters on the phase stability of 304 and 330 SS thin films. The 304 SS thin films with in-plane, biaxial residual stresses in the range of approximately 1 GPa (tensile) to approximately 300 MPa (compressive) exhibited only bcc structure. The retention of bcc 304 SS after high-temperature annealing followed by slow furnace cooling indicates depletion of Ni in as-sputtered 304 SS films. The 330 SS films sputtered at room temperature possess pure fcc phase. The Ni content and the substrate temperature during deposition are crucial factors in determining the phase stability in sputter deposited austenitic SS films.


2005 ◽  
Vol 907 ◽  
Author(s):  
Masatoshi Nakanishi ◽  
Gen-ichi Furusawa ◽  
Kokichi Waki ◽  
Yasushi Hattori ◽  
Takeo Kamino ◽  
...  

AbstractThe processes of phase transformation in individual nanoparticles of FePt and FePtCu synthesized by the reverse micelle method, which are chemically homogeneous and monodisperse, have been investigated by an in-situ HREM observation in a FE-TEM. Polycrystalline FePt particles, initially of chemically disordered face-centered cubic phase (A1) were reconstructed into A1 single crystals between 25 °C and 650 °C, followed by phase transformation from A1 to chemically ordered face-centered tetragonal phase (L10) which began between 650 °C and 680 °C. The coalescence began concurrently with phase transformation, i. e., between 650 °C and 680 °C. They turned to be a round-shaped L10 particle between 680 °C and 720 °C. The single crystal formation, the phase transformation from A1 to L10, the coalescence and the round-shaped particle formation were also observed in the FePtCu nanoparticles. The temperatures of single crystal formation, phase transformation (and coalescence) and round-shaped particle formation of the FePtCu nanoparticles were between 25 °C and 500 °C, between 550 °C and 600 °C and between 600 °C and 650 °C, respectively. These temperatures were substantially lower than those for the FePt nanoparticles.


1995 ◽  
Vol 10 (8) ◽  
pp. 1905-1912 ◽  
Author(s):  
Varsha Khare ◽  
N.P. Lalla ◽  
R.S. Tiwari ◽  
O.N. Srivastava

The quasicrystalline (qc) alloy Al65Cu20Cr15, unlike its Ru- and Fe-bearing counterparts like Al65Cu20Ru15 and Al65Cu20Fe15, is a metastable phase. This qc alloy has been shown to possess several structural variants and curious structural characteristics. We have investigated the qc alloy Al65Cu20Cr15 with special reference to the possible occurrence of new structural variants. TEM exploration of the as-quenched qc alloy has indeed revealed the existence of several new phases. These are (i) body-centered cubic (bcc) (a = 12.60 Å, disordered) and simple cubic (s.c.) (a = 12.60 Å, ordered), which are the 1/1 approximants of the primitive icosahedral phase (i phase); (ii) a twice order-induced modulated cubic phase (bcc, a = 25.20 Å) which has been shown to correspond to 1/1 approximant of the ordered i phase [i.e., face-centered icosahedral (FCI)]; and (iii) real crystalline bcc (a = 8.90 Å) and face-centered cubic (fcc) (a = 17.98 Å) phases possessing a specific orientation relationship with the icosahedral matrix phase. Tentative structural models showing the interrelationships between the bcc/fcc phases have been outlined.


2007 ◽  
Vol 40 (3) ◽  
pp. 559-569 ◽  
Author(s):  
Youliang He ◽  
John J. Jonas

The fundamental zones of Rodrigues–Frank (R-F) space applicable to misorientations between crystals of any two Laue groups are constructed by using a unified formulation in terms of quaternion algebra. Some of these regions are fully bounded by planes that are determined solely by the symmetries of the groups, while others have at least one unbounded direction. Each of the bounded fundamental zones falls into one of nine geometrically distinct configurations. The maximum symmetry-reduced angles and the corresponding Rodrigues–Frank vectors for these fundamental zones are evaluated. The use of Rodrigues–Frank space for the representation of orientation relationships between crystals of any two symmetry groups is also addressed. Examples concerning the transition of phases of the same symmetry group,i.e.from face-centered cubic to body-centered cubic, and of different groups,i.e.from body-centered cubic to hexagonal close-packed, are given to illustrate the usefulness of this space for representing orientation relationships during phase transformation or precipitation.


2003 ◽  
Vol 18 (5) ◽  
pp. 1104-1108 ◽  
Author(s):  
Hansoo Kim ◽  
Michael J. Kaufman ◽  
Wolfgang M Sigmund ◽  
David Jacques ◽  
Rodney Andrews

The crystallographic structure and orientation of iron nanoparticles present in carbon nanotubes (CNTs) was studied when iron was used as a catalyst. It was found that while most of the nanoparticles encapsulated inside the CNTs had the expected α–Fe (body-centered-cubic) phase, a significant number of them formed and retained the γ–Fe (face-centered-cubic) phase that is not the normal bulk phase at room temperature (nor even expected to form at the growth temperature used). It was also found iron particles at the tips of the nanotubes were either α–Fe or cementite (Fe3C). On the basis of these observations and thermodynamics, a mechanism for the formation of these particles and insights into CNT growth is proposed.


Sign in / Sign up

Export Citation Format

Share Document