Transformation kinetics of potassium and magnesium modified high-performance brushite cement to carbonated apatite in blood-mimicked condition

2021 ◽  
Vol 29 ◽  
pp. 102838
Author(s):  
Sahin Altundal ◽  
Karlis Agris Gross ◽  
Marco Laurenti ◽  
Enrique López-Cabarcos ◽  
Jorge Rubio-Retama
Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Wenjun Song ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

In this study, the phase transformation behaviour of the carburised layer and the matrix of 23CrNi3Mo steel was comparatively investigated by constructing continuous cooling transformation (CCT) diagram, determining the volume fraction of retained austenite (RA) and plotting dilatometric curves. The results indicated that Austenite formation start temperature (Ac1) and Austenite formation finish temperature (Ac3) of the carburised layer decreased compared to the matrix, and the critical cooling rate (0.05 °C/s) of martensite transformation is significantly lower than that (0.8 °C/s) of the matrix. The main products of phase transformation in both the carburised layer and the matrix were martensite and bainite microstructures. Moreover, an increase in carbon content resulted in the formation of lamellar martensite in the carburised layer, whereas the martensite in the matrix was still lath. Furthermore, the volume fraction of RA in the carburised layer was higher than that in the matrix. Moreover, the bainite transformation kinetics of the 23CrNi3Mo steel matrix during the continuous cooling process indicated that the mian mechanism of bainite transformation of the 23CrNi3Mo steel matrix is two-dimensional growth and one-dimensional growth.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruirui Wang ◽  
Renbing Wu ◽  
Chaofan Ding ◽  
Ziliang Chen ◽  
Hongbin Xu ◽  
...  

AbstractThe practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.


2020 ◽  
Vol 4 (4) ◽  
pp. 1747-1753 ◽  
Author(s):  
Yuanyuan Ma ◽  
Wenjie Zang ◽  
Afriyanti Sumboja ◽  
Lu Mao ◽  
Ximeng Liu ◽  
...  

Hollow structuring of active components is an effective strategy to improve the kinetics of oxygen electrode catalysts, arising from the increased the active surface area, the defects on the exposed surface, and the accessible active sites.


1986 ◽  
Vol 2 (12) ◽  
pp. 1189-1195 ◽  
Author(s):  
C. Grobler ◽  
G. T. Van Rooyen

2015 ◽  
Vol 48 (3) ◽  
pp. 827-835 ◽  
Author(s):  
Mingliang Tang ◽  
Xuerun Li ◽  
Yusheng Shen ◽  
Xiaodong Shen

Modeling of the kinetics of the synthesis process for calcium sulfate α-hemihydrate from gypsum formed by flue gas desulfurization (FGD) is important to produce high-performance products with minimal costs and production cycles under hydrothermal conditions. In this study, a model was established by horizontally translating the obtained crystal size distribution (CSD) to the CSD of the stable phase during the transformation process. A simple method was used to obtain the nucleation and growth rates. A nonlinear optimization algorithm method was employed to determine the kinetic parameters. The model can be successfully used to analyze the transformation kinetics of FGD gypsum to α-hemihydrate in an isothermal batch crystallizer. The results showed that the transformation temperature and stirring speed exhibit a significant influence on the crystal growth and nucleation rates of α-hemihydrate, thus altering the transformation time and CSD of the final products. The characteristics obtained by the proposed model can potentially be used in the production of α-hemihydrate.


Sign in / Sign up

Export Citation Format

Share Document