scholarly journals Titanium surface treatment by calcium modification with acid-etching promotes osteogenic activity and stability of dental implants

Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100801
Author(s):  
Yujiro Doe ◽  
Hiroto Ida ◽  
Masahiro Seiryu ◽  
Toru Deguchi ◽  
Nobuo Takeshita ◽  
...  
2020 ◽  
Vol 9 (4) ◽  
pp. e27942662
Author(s):  
Patrícia Capellato ◽  
Cláudia Eliana Bruno Marino ◽  
Gilbert Silva ◽  
Lucas Victor Benjamim Vasconcelos ◽  
Rodrigo Perito Cardoso ◽  
...  

During the last decades, researchers have been growing the interest in surface treatment with an antimicrobial agent. Silver nanoparticles (AgNPs) are widely used in biomedical fields due to their potent antimicrobial activity. So, in this study was investigated silver particles (isles) coated on titanium surface for dental and orthopedic application. Silver particles coating process on titanium surface were performed via sputtering that is a plasma-assisted deposition technique with and titanium without treatment was applied as comparing standard. Plasma treatment parameters were optimized so that the result was not a thin film of Ag but dispersed particles of Ag on the Ti-cp surface. The alloy surfaces were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). In order to investigate antibacterial potential Staphylococcus aureus and Escherichia coli have been used at Agar diffusion assay. The results were analyzed by analysis of variance (ANOVA) in order to verify significant difference antimicrobial activity between samples that have shown no difference between the surfaces studied treatments. For silver deposition scattered particles (isles) over titanium surface for a 10-minute treatment, EDS revealed by silver clusters that the particles were not properly scattered onto surface, hence, the low effectiveness in antibacterial activity.


2013 ◽  
Vol 117 (3) ◽  
pp. 1297-1307 ◽  
Author(s):  
Carole Gadois ◽  
Jolanta Światowska ◽  
Sandrine Zanna ◽  
Philippe Marcus

2018 ◽  
Vol 6 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Emilija Barjaktarova-Valjakova ◽  
Anita Grozdanov ◽  
Ljuben Guguvcevski ◽  
Vesna Korunoska-Stevkovska ◽  
Biljana Kapusevska ◽  
...  

AIM: The purpose of this review is to represent acids that can be used as surface etchant before adhesive luting of ceramic restorations, placement of orthodontic brackets or repair of chipped porcelain restorations. Chemical reactions, application protocol, and etching effect are presented as well.STUDY SELECTION: Available scientific articles published in PubMed and Scopus literature databases, scientific reports and manufacturers' instructions and product information from internet websites, written in English, using following search terms: “acid etching, ceramic surface treatment, hydrofluoric acid, acidulated phosphate fluoride, ammonium hydrogen bifluoride”, have been reviewed.RESULTS: There are several acids with fluoride ion in their composition that can be used as ceramic surface etchants. The etching effect depends on the acid type and its concentration, etching time, as well as ceramic type. The most effective etching pattern is achieved when using hydrofluoric acid; the numerous micropores and channels of different sizes, honeycomb-like appearance, extruded crystals or scattered irregular ceramic particles, depending on the ceramic type, have been detected on the etched surfaces.CONCLUSION: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.


2020 ◽  
Vol 110 ◽  
pp. 110682 ◽  
Author(s):  
Quan-ming Zhao ◽  
Xiao-kang Li ◽  
Shuo Guo ◽  
Ning Wang ◽  
Wen-Wen Liu ◽  
...  

Author(s):  
B. Beltran-Salinas ◽  
L. López-Sosa ◽  
Geo. Contreras-Hernandez ◽  
M. Guzmán-García ◽  
M.A.L. Hernandez-Rodriguez

2006 ◽  
Vol 17 (4) ◽  
pp. 290-295 ◽  
Author(s):  
Marcos Paulo Nagayassu ◽  
Luciana Keiko Shintome ◽  
Eduardo Shigueyuki Uemura ◽  
José Eduardo Junho de Araújo

The purpose of this in vitro study was to evaluate the effect of different surface treatments on the shear bond strength of a resin-based cement to porcelain. Sixty pairs of 50% aluminous porcelain discs were fabricated. In each pair, one disc measured 6 mm in diameter X 3 mm thickness (A) and the other measured 3 mm in diameter X 3mm thickness (B). The specimens were randomly assigned to 6 groups (n=10 pairs of discs), according to the surface treatment: etching with 10% hydrofluoric acid for 2 or 4min (G1 and G2); 50-µm particle aluminum oxide sandblasting for 5 s (G3); sandblasting followed by etching for 2 or 4min (G4 and G5) and control - no treatment (G6). A silane agent was applied to the treated surface of both discs of each pair. Bistite II DC dual-cure resin cement was applied and the B discs were bonded to their respective A discs. Specimens were stored in distilled water at 37ºC for 24 h and were tested in shear strength at a crosshead speed of 2 mm/min. Means in MPa were: G1: 14.21 ± 4.68; G2: 8.92 ± 3.02; G3: 10.04 ± 2.37; G4: 12.74 ± 5.15; G5: 10.99 ± 3.35; G6: 6.09 ± 1.84. Data were compared by one-way ANOVA and Tukey's test at 5% significance level. Bond strength recorded after 2-min acid etching was significantly higher than 4-min etching (p<0.05) and control (p<0.05), but did not differ significantlyfrom sandblasting alone (p>0.05) or followed by etching for 2 or 4 min (p>0.05). Within the limitations of an in vitro study, it may be concluded that 2-min hydrofluoric acid etching produced a favorable micromechanical retention that enhanced resin cement bond strength to porcelain.


2016 ◽  
Vol 27 (6) ◽  
pp. 734-738 ◽  
Author(s):  
Natália Regina Santos de Matos ◽  
Ana Rosa Costa ◽  
Heloísa Cristina Valdrighi ◽  
Américo Bortolazzo Correr ◽  
Silvia Amélia Vedovello ◽  
...  

Abstract The aim of this study was to evaluate the effect of silanes, thermal cycling and acid etching on the shear bond strength (SBS) of metallic brackets to feldspathic ceramic. Feldspathic ceramic cylinders (Groups 1, 2, 5 and 6) were etched for 60 s with 10% hydrofluoric acid and Groups 3, 4, 7 and 8, without acid etching. Two layers of silane Clearfil Ceramic Primer (CCP, Groups 1 to 4) and two layers of RelyX Ceramic Primer (RCP, groups 5 to 8) were applied and dried for 60 s. Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with Bluephase G2. All specimens were stored in deionized water at 37 °C for 24 h, and the specimens of groups 1, 3, 5 and 7 were submitted to 7,000 thermal cycles (5 °C/55 °C). After storage, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to three-way ANOVA and Tukey's post hoc test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8x magnification. The SBS of CCP was significantly greater than of RCP (p<0.05), with or without thermal cycling. Thermal cycling significantly reduced the SBS (p<0.05). The groups submitted to acid etching showed significantly higher SBS than those without acid etching (p<0.05). In conclusion, thermal cycling reduced SBS for all groups. The best ceramic surface treatment for bracket bonding was achieved by acid etching and CCP silane. The ARI results showed predominance of score 0 for all groups.


2014 ◽  
Vol 8 (1) ◽  
pp. 114-119 ◽  
Author(s):  
In-Sung Yeo

Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.


2014 ◽  
Vol 1043 ◽  
pp. 145-148
Author(s):  
Yashkta Shivalingam Nadar ◽  
Muralithran Govindan Kutty ◽  
Abdul Razak Abdul Aziz

The objective of this study is to investigate the effect of sandblasting and acid etching on the surface roughness and morphology of pure titanium and titanium alloy to compare their relative contribution. Both of these samples were first sandblasted and then acid etched using HCL and H2SO4for different duration and temperature. The results of this study indicated that the roughness value for pure titanium increased after acid etching while the opposite occurred for the titanium alloy. It is suggested that the decrease is due to significant over etching of the protective titanium oxide layer on the alloy.


Sign in / Sign up

Export Citation Format

Share Document