scholarly journals Reality of Dental Implant Surface Modification: A Short Literature Review

2014 ◽  
Vol 8 (1) ◽  
pp. 114-119 ◽  
Author(s):  
In-Sung Yeo

Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.

Author(s):  
F Reshadi ◽  
S Khorasani ◽  
G Faraji

This study investigated the surface characteristics of ultrafine-grain commercially pure titanium (UFG CP-Ti) substrates produced by equal channel angular pressing (ECAP), compared with those of coarse-grain commercially pure titanium (CG CP-Ti) and Ti–6Al–4V (Ti-64) substrates. All Ti surfaces were sandblasted and acid-etched (SLA-treated) to produce micro-rough surfaces. Tensile and microhardness tests were carried out to measure the mechanical properties of fabricated samples. Then the surface characteristics of samples including contact angle measurements, surface morphology and in vitro cell response were evaluated after polishing, sandblasting and acid etching procedures. The results showed that after applying four passes of ECAP, the average grain size of microstructure decreased from 25 µm to 170 nm, while the ultimate tensile strength increased from 545 ± 24 MPa to 971 ± 38 MPa. Investigation of surface morphologies carried out by scanning electron microscopy indicated that ECAP-processed substrate exhibits nano-topography compared with CG CP-Ti and Ti-64 substrates after applying SLA process. In addition, the contact angle of SLA-treated CG CP-Ti and UFG CP-Ti substrates decreased from 68.3° to 9.5° and 51.9° to 7.4°, respectively, indicating a significant improvement of surface wettability. The morphologies of MG63 cells cultured on the developed surfaces proved the potential superior osteoblast cell compatibility of the micro-roughened surface made of UFG CP-Ti substrates over CG CP-Ti and Ti-64 substrates.


2004 ◽  
Vol 75 (2) ◽  
pp. 292-296 ◽  
Author(s):  
Antonio Scarano ◽  
Maurizio Piattelli ◽  
Sergio Caputi ◽  
Gian Antonio Favero ◽  
Adriano Piattelli

2012 ◽  
Vol 23 (5) ◽  
pp. 496-501 ◽  
Author(s):  
Marcelo Bighetti Toniollo ◽  
Rodrigo Galo ◽  
Ana Paula Macedo ◽  
Renata Cristina Silveira Rodrigues ◽  
Ricardo Faria Ribeiro ◽  
...  

The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i corr) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.


2010 ◽  
Vol 81 (10) ◽  
pp. 1466-1471 ◽  
Author(s):  
Antonio Scarano ◽  
Adriano Piattelli ◽  
Antonella Polimeni ◽  
Donato Di Iorio ◽  
Francesco Carinci

2007 ◽  
Vol 330-332 ◽  
pp. 333-336 ◽  
Author(s):  
Xiao Xiao Cai ◽  
Ping Gong ◽  
Yi Man ◽  
Zhi Qing Chen ◽  
Gang He

This research was aimed at the construction and characterization of nano-FHA bioceramic coating on titanium surface. Nano-FHA coating was constructed on the surface of commercially pure titanium by sol-gel route. X-ray diffraction (XRD), scanning electromicroscope (SEM) and dissolution test was employed to characterize the obtained coating. In vitro cellular responses of osteoblasts to the coating were also evaluated by MTT assay, ALP assay and SEM observation. Conventional HA coatings and commercially pure titanium (cpTi) were taken as control. Results show the nano-FHA bioceramic coating has good crystallization and homogeneous, nano-scale surface morphology. The dissolution rate of the coating is favorable. The in vitro osteoblasts culture exhibits satisfactory bioactivity.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Masayuki Nakamura ◽  
Hachidai Aizawa ◽  
Hideo Kawabata ◽  
Atsushi Sato ◽  
Taisuke Watanabe ◽  
...  

Abstract Background Platelet-rich plasma (PRP) is often used to improve surface biocompatibility. We previously found that platelets rapidly adhere to plain commercially pure titanium (cp-Ti) plates in the absence, but not in the presence, of plasma proteins. To further expand on these findings, in the present study, we switched titanium plates from a plain surface to a rough surface that is blasted with calcium phosphate (CaP) powder and then examined platelet adhesion and activation. Methods Elemental distribution in CaP-blasted cp-Ti plates was analyzed using energy-dispersive X-ray spectroscopy. PRP samples prepared from anticoagulated blood samples of six healthy, non-smoking adult male donors were loaded on CaP-blasted cp-Ti plates for 1 h and fixed for examination of platelet morphology and visualization of PDGF-B and platelet surface markers (CD62P, CD63) using scanning electron microscopy and fluorescence microscopy. Plain SUS316L stainless steel plates used in injection needles were also examined for comparison. Results Significant amounts of calcium and phosphate were detected on the CaP-blasted cp-Ti surface. Platelets rapidly adhered to this surface, leading to higher activation. Platelets also adhered to the plain stainless surface; however, the levels of adhesion and activation were much lower than those observed on the CaP-blasted cp-Ti plate. Conclusions The CaP-blasted cp-Ti surface efficiently entraps and activates platelets. Biomolecules released from the activated platelets could be retained by the fibrin matrix on the surface to facilitate regeneration of the surrounding tissues. Thus, PRP immersion could not only eliminate surface air bubbles but also improve the biocompatibility of the implant surface.


2018 ◽  
Vol 15 (3) ◽  
pp. 253-261
Author(s):  
Baghdad Science Journal

Commercially pure titanium (cpTi) is widely used as dental implant material although it was found that titanium exhibited high modulus of elasticity and the lower corrosion tendency in oral environment. Niobium(Nb) was chosen for this study as an alternative to cpTi implant material due to its bioinert behavior and good elastic modulus and moderate cost in addition to corrosion resistance. This study was done to evaluate the effect of biomimetic coating on the surface properties of the commercially pure titanium and niobium implants by in vitro and in vivo experiments. The in vitro study was involved etching the samples of each material in HCl then soaking in 10M NaOH aqueous solution. These samples were then immersed in a 5 times concentrated simulated body fluid for 14 days. Scanning Electron Microscope, Energy Dispersive X-ray, and X-Ray Diffraction tests were done to analyze surface changes. The in vivo study was done by the implantation of screw-shaped implants (two from each material, uncoated and the other was biomimetically coated) in the tibias of New Zealand rabbits. After 2 and 4 weeks of healing period, 20 rabbits were sacrificed for each period. A removal torque was done for ten animals in each group, whereas the other ten were used for histological testing and histomorphometric analysis with optical microscope.The in vitro experiments showed that the use of 14 days immersion in a concentrated simulated body fluid produced a layer of calcium phosphate on metal surfaces. The removal torque values and new bone formation were increased significantly in Nb than Ti, in coated than uncoated screws, and in 4 weeks than 2 weeks healing periods. The Nb implants had better biomechanical and biological properties than the commercially pure titanium implants and can be used as an alternative dental implant.


2006 ◽  
Vol 309-311 ◽  
pp. 403-406 ◽  
Author(s):  
Motoharu Miyamoto ◽  
Hiroshi Kono ◽  
Akihiko Yuda ◽  
Hisanoro Goto ◽  
Miho Machigashira ◽  
...  

The effects of four surface modification (acid-etching, alkaline treatment, acid-etching /alkaline treatment, and sandblasting) of commercially pure titanium (cpTi) on the early cellular responses of osteoblast-like MC3T3-E1 cells were investigated. MTT assay was used to measure the levels of cell attachment to the different surface specimens after 1-, 2-, and 3-hr cell incubation. All data were submitted to two-way analysis of variance. Cell morphology was observed by scanning electron microscopy (SEM). Results showed that initial adhesion of osteoblast-like cells was independent on the surface of cpTi modified with different method.


Sign in / Sign up

Export Citation Format

Share Document