Fatigue life enhancement in alpha/beta Ti–6Al–4V after shot peening: An EBSD and TEM crystallographic orientation mapping study of surface layer

Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100813 ◽  
Author(s):  
Zheng Zhang ◽  
Ming Lin ◽  
Debbie Hwee Leng Seng ◽  
Siew Lang Teo ◽  
Fengxia Wei ◽  
...  
2019 ◽  
Vol 813 ◽  
pp. 352-357 ◽  
Author(s):  
Barbara Reggiani ◽  
Giorgio Olmi ◽  
Leonardo Orazi ◽  
Luca Tomesani ◽  
Stefano Fini ◽  
...  

The aim of the present work was the assessment of the impact of deep-rolling and shot-peening performed in the underhead and in the unthreaded shank of two high strength screws (36 NiCrMo and 42 CrMoV) for fatigue life enhancement. The experimental campaign consisted of six combinations, including the non-treated state. The aforementioned treatments were evaluated alone or with shot-peening performed after deep-rolling in the underhead fillet of the screws. Deep rolling was carried out at the optimal rolling force, whereas two shot diameters were considered for shot-peening (Z100 and UFS70). The results have been evaluated in terms of fatigue limits and factor effects have been assessed by marginal mean plots.


2018 ◽  
Vol 100 (9-12) ◽  
pp. 2885-2893 ◽  
Author(s):  
S. Benchouia ◽  
N. Merakeb ◽  
S. Adjel ◽  
S. Ehlers ◽  
M. Baccouche ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1093 ◽  
Author(s):  
Reggiani

Shot-peening and deep rolling are mechanical surface treatments that are commonly applied to enhance the fatigue performances of components, owing to their capacity to generate compressive residual stresses and induce work hardening. However, literature is still poor of published data concerning the application of these treatments to high strength steels fasteners, although these represent a class of components among the most widespread. In the present work, the impact of deep rolling and shot-peening performed in the underhead radius of two set of fasteners made of 36NiCrMo and 42CrMoV for fatigue life enhancement has been investigated. The experimental tests consisted of six combinations of shot-peening and deep rolling, including the non-treated state. Two test campaigns have been sequentially carried out with different process parameters and treatment sequences. The results always showed a beneficial impact of the deep rolling on fatigue, especially for the 42CrMoV steel. Conversely, the effect of the shot-peening strongly depended on the selected set of parameters, alternatively leading to an improvement or a worsening of the fatigue life in relation to the level of induced surface roughness.


2019 ◽  
Vol 269 ◽  
pp. 06002
Author(s):  
Salina Saidin ◽  
Dahia Andud ◽  
Yupiter H. P. Manurung ◽  
Muhd. Faiz Mat ◽  
Noridzwan Nordin ◽  
...  

This paper deals with a comprehensive investigation of fatigue life enhancement on semiautomated Gas Metal Arc Welding (GTAW) butt weld joint which is found almost everywhere in Malaysia welding structure steel sectors. The selected material in this study was high strength low alloy steel S460G2+M commonly used extremely in steel structure due to its outstanding mechanical properties. In this investigation, the method for joining the butt weld was conducted by unprofessional welder using semi-automated GMAW. At first, suitable welding parameters were identified and formulated into welding procedure specification (WPS) qualification conforming to AWS D1.1 standard. The test specimens were prepared and tested to ensure the welding quality. Further, the HFMI using Pneumatic Impact Treatment (PIT) technique were applied at the weld toe of the butt weld as tool for fatigue life enhancement. To investigate the influence of HFMI/PIT on the fatigue strength, the specimens were undergone fatigue test using universal fatigue machine using a constant amplitude loading. Finally, the comparison of the fatigue strength of as welded and treated specimens to indicate the beneficial influence of the treatment. Yes, the conduction by unprofessional welder using semi-automatic GMAW, the findings showed the improvement of fatigue strength and slope of S-N curves. In addition, the fracture location of test specimen shows physically affected by shifting from critical weld transition to base metal. The tensile test and hardness value also showed a slight difference as compared to untreated specimens.


2015 ◽  
Vol 112 ◽  
pp. 93-107 ◽  
Author(s):  
Galya Duncheva ◽  
Jordan Maximov ◽  
Nikolaj Ganev ◽  
Marieta Ivanova

2007 ◽  
Vol 561-565 ◽  
pp. 2393-2398 ◽  
Author(s):  
Yoshihisa Kaneko ◽  
Y. Nishijima ◽  
T. Sanda ◽  
Satoshi Hashimoto

Effect of Ni/Cu multilayer coating on fatigue durability was investigated. The Ni/Cu multilayered films were coated on cylindrical copper specimens by electroplating technique. Thickness of individual component layers was h=20nm and 100nm and the total thickness was 5μm. The specimens with a conventional nickel coating and uncoated specimens were also prepared. Push-pull fatigue tests were carried out in air at room temperature. It was found that the specimens with the Ni/Cu multilayered coatings exhibited the fatigue lives longer than those of the conventional nickel coating. In particular, the fatigue life with the h=100nm multilayer was at least ten times longer than that with the nickel coating at the stress amplitude of 90MPa. From the electron channelling contrast imaging (ECCI) observation of subsurface areas of the copper specimens, dislocation structures peculiar to fatigue deformation was suppressed by the surface coatings.


Sign in / Sign up

Export Citation Format

Share Document