scholarly journals Experimental Investigation on the Effect of Shot Peening and Deep Rolling on the Fatigue Response of High Strength Fasteners

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1093 ◽  
Author(s):  
Reggiani

Shot-peening and deep rolling are mechanical surface treatments that are commonly applied to enhance the fatigue performances of components, owing to their capacity to generate compressive residual stresses and induce work hardening. However, literature is still poor of published data concerning the application of these treatments to high strength steels fasteners, although these represent a class of components among the most widespread. In the present work, the impact of deep rolling and shot-peening performed in the underhead radius of two set of fasteners made of 36NiCrMo and 42CrMoV for fatigue life enhancement has been investigated. The experimental tests consisted of six combinations of shot-peening and deep rolling, including the non-treated state. Two test campaigns have been sequentially carried out with different process parameters and treatment sequences. The results always showed a beneficial impact of the deep rolling on fatigue, especially for the 42CrMoV steel. Conversely, the effect of the shot-peening strongly depended on the selected set of parameters, alternatively leading to an improvement or a worsening of the fatigue life in relation to the level of induced surface roughness.

2019 ◽  
Vol 813 ◽  
pp. 352-357 ◽  
Author(s):  
Barbara Reggiani ◽  
Giorgio Olmi ◽  
Leonardo Orazi ◽  
Luca Tomesani ◽  
Stefano Fini ◽  
...  

The aim of the present work was the assessment of the impact of deep-rolling and shot-peening performed in the underhead and in the unthreaded shank of two high strength screws (36 NiCrMo and 42 CrMoV) for fatigue life enhancement. The experimental campaign consisted of six combinations, including the non-treated state. The aforementioned treatments were evaluated alone or with shot-peening performed after deep-rolling in the underhead fillet of the screws. Deep rolling was carried out at the optimal rolling force, whereas two shot diameters were considered for shot-peening (Z100 and UFS70). The results have been evaluated in terms of fatigue limits and factor effects have been assessed by marginal mean plots.


The paper handles the fatigue and failing analysis of serial shot-peened leaf springs of cumbersome vehicles emphasizing on the impact of shot peening on fatigue life, coping with automotive leaf springs, the shot peening method turns into an important step in production.In the situation of leaf spring suspensions, however, asystematic research of the effect of shot peening about fatigue life isstill required. Experimental stress-life curves are determined with the aid of the usage of investigating clean specimen subjected to shot peening. those test consequences are as compared to corresponding ones identified from cyclic three-point test on shot peened serial leaf springs in order to show the influence of applied heat treatment and shot peening approach on fatigue existence of high-strength used to get leaf spring manufacturing, reliant on the load level. Analyses are performed to explain the effects resulting from shot peening practice on the surface features of the high-strength spring steel under examination. The evaluation of fatigue results shows that almost no life improvement due to production highlighting the importance for mutual variation in parameters of shot peening and thermal treatment so that there is sufficient progress in life


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1339
Author(s):  
Bernd Breidenstein ◽  
Berend Denkena ◽  
Alexander Krödel ◽  
Vannila Prasanthan ◽  
Gerhard Poll ◽  
...  

By combining different materials, for example, high-strength steel and unalloyed structural steel, hybrid components with specifically adapted properties to a certain application can be realized. The mechanical processing, required for production, influences the subsurface properties, which have a deep impact on the lifespan of solid components. However, the influence of machining-induced subsurface properties on the operating behavior of hybrid components with a material transition in axial direction has not been investigated. Therefore, friction-welded hybrid shafts were machined with different process parameters for hard-turning and subsequent deep rolling. After machining, subsurface properties such as residual stresses, microstructures, and hardness of the machined components were analyzed. Significant influencing parameters on surface and subsurface properties identified in analogy experiments are the cutting-edge microgeometry, S¯, and the feed, f, during turning. The deep-rolling overlap, u, hardly changes the residual stress depth profile, but it influences the surface roughness strongly. Experimental tests to determine fatigue life under combined rolling and rotating bending stress were carried out. Residual stresses of up to −1000 MPa, at a depth of 200 µm, increased the durability regarding rolling-contact fatigue by 22%, compared to the hard-turned samples. The material transition was not critical for failure.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Andre Shihomatsu ◽  
Sergio Tonini Button ◽  
Iris Bento da Silva

Hot stamping of high strength steels has been continuously developed in the automotive industry to improve mechanical properties and surface quality of stamped components. One of the main challenges faced by researchers and technicians is to improve stamping dies lifetime by reducing the wear caused by high pressures and temperatures present during the process. This paper analyzes the laser texturing of hot stamping dies and discusses how different surfaces textures influence the lubrication and wear mechanisms. To this purpose, experimental tests and numerical simulation were carried out to define the die region to be texturized and to characterize the textured surface topography before and after hot stamping tests with a 3D surface profilometer and scanning electron microscopy. Results showed that laser texturing influences the lubrication at the interface die-hot sheet and improves die lifetime. In this work, the best texture presented dimples with the highest diameter, depth, and spacing, with the surface topography and dimples morphology practically preserved after the hot stamping tests.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3265 ◽  
Author(s):  
Anna Szcześniak ◽  
Jacek Zychowicz ◽  
Adam Stolarski

This paper presents research on the impact of fly ash addition on selected physical and mechanical parameters of concrete made with slag cement. Experimental tests were carried out to measure the migration of chloride ions in concrete, the tightness of concrete exposed to water under pressure, and the compressive strength and tensile strength of concrete during splitting. Six series of concrete mixes made with CEM IIIA 42.5 and 32.5 cement were tested. The base concrete mix was modified by adding fly ash as a partial cement substitute in the amounts of 25% and 33%. A comparative analysis of the obtained results indicates a significant improvement in tightness, especially in concrete based on CEM IIIA 32.5 cement and resistance to chloride ion penetration for the concretes containing fly ash additive. In the concretes containing fly ash additive, a slower rate of initial strength increase and high strength over a long period of maturation are shown. In accordance with the presented research results, it is suggested that changes to the European standardization system be considered, to allow the use of fly ash additive in concrete made with CEM IIIA 42.5 or 32.5 cement classes. Such a solution is not currently acceptable in standards in some European Countries.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 344
Author(s):  
Dario Croccolo ◽  
Massimiliano De Agostinis ◽  
Stefano Fini ◽  
Giorgio Olmi ◽  
Luca Paiardini ◽  
...  

Bolted joints are highly loaded components and serious issues may arise from improper fastening and in particular from too high or too low preload. Friction at the underhead plays an important role, as it significantly affects the achievable preload for fixed and controlled tightening torque. In addition, multiple tightening is usually performed on connecting rod screws, which may be a further source of friction increment. This study investigates the effect of two surface treatments, shot-peening and deep-rolling, on the tribological properties upon bolt fastening. This topic was tackled experimentally and the campaign involved MJ9 X 1 4 g grade 13.9 36 NiCrMo connecting rod screws, in both lubricated and dry conditions. The results, processed by statistical tools, indicate that deep-rolling does not affect friction, whereas shot-peening yields significant benefits. As an effect of the generation of dimples and multiple contacts, it is able to lower (up to 25%) the bearing frictional coefficient in lubricated conditions, also making the friction level independent of the number of re-tightenings. For a dry surface, an even higher friction decrease (up to 30%) is achieved. Without lubrication, the friction coefficient keeps increasing for the incremented number of tightenings, but the increase rate is lowered with respect to the untreated surface.


1968 ◽  
Vol 10 (4) ◽  
pp. 329-336
Author(s):  
L. P. Pook

The results of tests on two high-strength steels, beryllium copper and perspex, together with some published data on high-strength steels were examined to see whether there was any relationship between the fracture mechanics parameter K1C and conventional mechanical properties. It was found that for steels and beryllium copper a correlation appeared to exist between K1C and the zero gauge length strain (= Z/(1 - Z) where Z is the reduction of area measured in a tensile test). It was also found that for constant, K1C was proportional to the square root of Young's modulus. The correlation band for steels was too wide for K1C to be estimated accurately from.


2015 ◽  
Vol 818 ◽  
pp. 19-22
Author(s):  
Łukasz Bąk ◽  
Magdalena Bucior ◽  
Felix Stachowicz ◽  
Władysław Zielecki

Numerous investigations have been performed in an attempt to improve fatigue strength of materials by creating compressive residual stresses in the surface layers as a result of the shot peening process. For example, during exploitation of the separating screener, some parts of screen sieve plate situated near the fixed edge undergo the largest deformation caused by impact bending and need special treatment. In this paper, the results of experimental tests are presented to analyse the effect of micro shot peening on surface layer characteristics and fatigue strength of steel sheet specimens. The effect of shot peening is more visible when fatigue life is taking into account. Thus, the use of shot peening of sheet surface made it possible to increase fatigue life of screener sieve.


Sign in / Sign up

Export Citation Format

Share Document