scholarly journals Efficient establishment of pure cultures of yellow chanterelle Cantharellus anzutake from ectomycorrhizal root tips, and morphological characteristics of ectomycorrhizae and cultured mycelium

Mycoscience ◽  
2019 ◽  
Vol 60 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Wakana Ogawa ◽  
Naoki Endo ◽  
Yumi Takeda ◽  
Miyuki Kodaira ◽  
Masaki Fukuda ◽  
...  
Plant Disease ◽  
2020 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Yu Han Zhou

Monstera deliciosa Liebm is an ornamental foliage plant (Zhen et al. 2020De Lojo and De Benedetto 2014). In July of 2019, anthracnose lesions were observed on leaves of M. deliciosa cv. Duokong with 20% disease incidence of 100 plants at Guangdong Ocean University campus (21.17N,110.18E), Guangdong Province, China. Initially affected leaves showed chlorotic spots, which coalesced into larger irregular or circular lesions. The centers of spots were gray with a brown border surrounded by a yellow halo (Supplementary figure 1). Twenty diseased leaves were collected for pathogen isolation. Margins of diseased tissue was cut into 2 × 2 mm pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite (NaOCl) for 60 s, rinsed three times with sterile water before isolation. Potato dextrose agar (PDA) was used to culture pathogens at 28℃ in dark. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. Fourteen isolates were obtained from 20 leaves. Three single-spore isolates (PSC-1, PSC-2, and PSC-3) were obtained ,obtained, which were identical in morphology and molecular analysis (ITS). Therefore, the representative isolate PSC-1 was used for further study. The culture of isolate PSC-1 on PDA was initially white and later became cottony, light gray in 4 days, at 28 °C. Conidia were single celled, hyaline, cylindrical, clavate, and measured 13.2 to 18.3 µm × 3.3 to 6.5 µm (n = 30). Appressoria were elliptical or subglobose, dark brown, and ranged from 6.3 to 9.5 µm × 5.7 to 6.5 µm (n = 30). Morphological characteristics of isolate PSC-1 were consistent with the description of Colletotrichum siamense (Prihastuti et al. 2009; Sharma et al. 2013). DNA of the isolate PSC-1 was extracted for PCR sequencing using primers for the rDNA ITS (ITS1/ITS4), GAPDH (GDF1/GDR1), ACT (ACT-512F/ACT-783R), CAL (CL1C/CL2C), and TUB2 (βT2a/βT2b) (Weir et al. 2012). Analysis of the ITS (accession no. MN243535), GAPDH (MN243538), ACT (MN512640), CAL (MT163731), and TUB2 (MN512643) sequences revealed a 97-100% identity with the corresponding ITS (JX010161), GAPDH (JX010002), ACT (FJ907423), CAL (JX009714) and TUB2 (KP703502) sequences of C. siamense in GenBank. A phylogenetic tree was generated based on the concatenated sequences of ITS, GAPDH, ACT, CAL, and TUB2 which clustered the isolate PSC-1 with C. siamense the type strain ICMP 18578 (Supplementary figure 2). Based on morphological characteristics and phylogenetic analysis, the isolate PSC-1 associated with anthracnose of M. deliciosa was identified as C. siamense. Pathogenicity test was performed in a greenhouse at 24 to 30oC with 80% relative humidity. Ten healthy plants of cv. Duokong (3-month-old) were grown in pots with one plant in each pot. Five plants were inoculated by spraying a spore suspension (105 spores ml-1) of the isolate PSC-1 onto leaves until runoff, and five plants were sprayed with sterile water as controls. The test was conducted three times. Anthracnose lesions as earlier were observed on the leaves after two weeks, whereas control plants remained symptomless. The pathogen re-isolated from all inoculated leaves was identical to the isolate PSC-1 by morphology and ITS analysis, but not from control plants. C. gloeosporioides has been reported to cause anthracnose of M. deliciosa (Katakam, et al. 2017). To the best of our knowledge, this is the first report of C. siamense causing anthracnose on M. deliciosa in ChinaC. siamense causes anthracnose on a variety of plant hosts, but not including M. deliciosa (Yanan, et al. 2019). To the best of our knowledge, this is the first report of C. siamense causing anthracnose on M. deliciosa, which provides a basis for focusing on the management of the disease in future.


2009 ◽  
Vol 75 (14) ◽  
pp. 4727-4735 ◽  
Author(s):  
J. L. Sachs ◽  
S. W. Kembel ◽  
A. H. Lau ◽  
E. L. Simms

ABSTRACTBacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genusBradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genusLotus. Two hundred eighty pure cultures ofBradyrhizobiumbacteria were isolated and genotyped from wild hosts, includingLotus angustissimus,Lotus heermannii,Lotus micranthus, andLotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies ofBradyrhizobiumisolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 835-835 ◽  
Author(s):  
J. R. Úrbez-Torres ◽  
W. D. Gubler ◽  
H. Peláez ◽  
Y. Santiago ◽  
C. Martín ◽  
...  

Between 2000 and 2004, 176 vineyards were surveyed for disease symptoms throughout the main grapevine-production areas of Bierzo, Cigales, Ribera del Duero, Rueda, and Toro in the Castilla y León region of Spain. Symptoms resembling Eutypa dieback, such as stunted chlorotic shoots, deformed leaves with necrotic areas, and typical wedge-shaped cankers in the wood, were observed in 80% of surveyed vineyards. The second most common disease observed was esca. The mild form of esca, interveinal chlorosis or reddened patterns on the leaves, was observed in 35% of surveyed vineyards. Severe esca symptoms that include sudden defoliation of some or all parts of the vine followed by shriveling of fruit clusters were observed in vineyards during very hot and dry summer periods. Wood from vines with esca was yellowish, soft, and often partially or completely surrounded by necrotic wood. Black vascular streaking in the wood was also observed in some vines with esca. Samples of wood from vines with symptoms of Eutypa dieback or esca were collected from different cultivars (Tempranillo, Cabernet Sauvignon, Mencía, Garnacha, Viura, and Verdejo). Small pieces of symptomatic wood were placed on 4% potato dextrose agar amended with tetracycline hydrochloride (0.01%) (PDA-tet) and incubated at room temperature. Pure cultures were obtained by excising hyphal tips and transferring to PDA-tet. Species of Botryosphaeria were most frequently isolated from wedge-shaped cankers as well as from wood with necrosis or black vascular streaking. Botryosphaeria spp. also were isolated from the soft yellowish wood, however, Fomitiporia punctata, Stereum hirsutum, and Phaeoacremonium spp. were the most common fungi associated with this symptom. On the basis of morphological characteristics in culture (1), three species were isolated (B. obtusa, B. dothidea, and B. parva). Colonies of B. obtusa were green to dark green with moderate aerial mycelium. Pycnidia developed after 6 days and conidia (n = 50) measured 19 to 27 × 9 to 17 μm and were hyaline and light brown, becoming dark brown when mature, mostly aseptate, and rounded in shape. Colonies of B. dothidea were white, becoming dark green with age and with copious aerial mycelium. Pycnidia started to develop after 10 days, and conidia measured 17 to 31 × 4 to 8 μm, were hyaline, aseptate, and fusiform in shape. Colonies of B. parva were similar in appearance to those of B. dothidea but pycnidia developed after 5 weeks. Conidia measured 11 to 21 × 4 to 9 μm, were hyaline when immature, becoming light brown with two septa with age, and ellipsoidal in shape. Identity of the three Botryosphaeria species was confirmed by comparing morphology with growth of the following identified California isolates: B. obtusa (UCD352Mo and UCD666Na), B. dothidea (UCD1066So), and B. parva (UCD642So) and by comparing sequences of the internal transcribed spacer region (ITSI-5.8S-ITS2) rDNA, and a partial sequence of the β-tubulin gene (BT2) of our isolates with those of previously identified and sequenced isolates deposited in GenBank. Sequences of B. obtusa (UCD343Spa, UCD461Spa, UCD468Spa, and UCD621Spa), B. dothidea (UCD303Spa), and B. parva (UCD577Spa and UCD578Spa) were deposited in GenBank. To our knowledge, this is the first report of B. obtusa, B. dothidea, and B. parva on grapevines in the Castilla y León region in Spain. Reference: (1) A. J. L. Phillips. Phytopathol. Mediterr. 41:3, 2002.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiujing Hong ◽  
Shijia Chen ◽  
linchao Wang ◽  
Bo Liu ◽  
Yuruo Yang ◽  
...  

Akebia trifoliata, a recently domesticated horticultural crop, produces delicious fruits containing multiple nutritional metabolites and has been widely used as medicinal herb in China. In June 2020, symptoms of dried-shrink disease were first observed on fruits of A. trifoliata grown in Zhangjiajie, China (110.2°E, 29.4°N) with an incidence about 10%. The infected fruits were shrunken, colored in dark brown, and withered to death (Figure S1A, B). The symptomatic fruits tissues (6 × 6 mm) were excised from three individual plants, surface-disinfested in 1% NaOCl for 30s and 70% ethanol solution for 45s, washed, dried, and plated on potato dextrose agar (PDA) containing 50 mg/L streptomycin sulfate in the dark, and incubated at 25℃ for 3 days. Subsequently, hyphal tips were transferred to PDA to obtain pure cultures. After 7 days, five pure cultures were obtained, including two identical to previously reported Colletotrichum gloeosporioides causing leaf anthracnose in A. trifoliata (Pan et al. 2020) and three unknown isolates (ZJJ-C1-1, ZJJ-C1-2, and ZJJ-C1-3). The mycelia of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 were white, and formed colonies of approximate 70 mm (diameter) in size at 25℃ after 7 days on potato sucrose agar (PSA) plates (Figure S1C). After 25 days, conidia were formed, solitary, globose, black, shiny, smooth, and 16-21 μm in size (average diameter = 18.22 ± 1.00 μm, n = 20) (Figure S1D). These morphological characteristics were similar to those of N. sphaerica previously reported (Li et al. 2018). To identify species of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3, the internal transcribed spacer (ITS) region, β-tubulin (TUB2), and the translation elongation factor 1-alpha (TEF1-α) were amplified using primer pairs including ITS1/ITS4 (Vilgalys and Hester 1990), Bt-2a/Bt-2b (Glass and Donaldson 1995), and EF1-728F/EF-2 (Zhou et al. 2015), respectively. Multiple sequence analyses showed no nucleotide difference was detected among genes tested except ITS that placed three isolates into two groups (Figure S2). BLAST analyses determined that ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 had 99.73% to N. sphaerica strains LC2705 (KY019479), 100% to LC7294 (KY019397), and 99.79-100% to LC7294 (KX985932) or LC7294 (KX985932) based on sequences of TUB2 (MW252168, MW269660, MW269661), TEF-1α (MW252169, MW269662, MW269663), and ITS (MW250235, MW250236, MW192897), respectively. These indicated three isolates belong to the same species of N. sphaerica. Based on a combined dataset of ITS, TUB2 and TEF-1α sequences, a phylogenetic tree was constructed using Maximum likelihood method through IQ-TREE (Minh et al. 2020) and confirmed that three isolates were N. sphaerica (Figure S2). Further, pathogenicity tests were performed. Briefly, healthy unwounded fruits were surface-disinfected in 0.1% NaOCl for 30s, washed, dried and needling-wounded. Then, three fruits were inoculated with 10 μl of conidial suspension (1 × 106 conidia/ml) derived from three individual isolates, with another three fruits sprayed with 10 μl sterilized water as control. The treated fruits were incubated at 25℃ in 90% humidity. After 15 days, all the three fruits inoculated with conidia displayed typical dried-shrink symptoms as those observed in the farm field (Figure S1E). The decayed tissues with mycelium and spores could be observed on the skin or vertical split of the infected fruits after 15 days’ inoculation (Figure S1F-H). Comparably, in the three control fruits, there were no dried-shrink-related symptoms displayed. The experiment was repeated twice. The re-isolated pathogens were identical to N. sphaerica determined by sequencing the ITS, TUB2 and TEF-1α. Previous reports showed N. sphaerica could cause postharvest rot disease in kiwifruits (Li et al. 2018). To our knowledge, this is the first report of N. sphaerica causing fruits dried-shrink disease in A. trifoliata in China.


Genetics ◽  
1973 ◽  
Vol 73 (4) ◽  
pp. 605-612
Author(s):  
S B Gupta ◽  
Pratibha Gupta

ABSTRACT The F, hybrids of Nicotiana suaveolen (subgenus Petunioides, 2n = 32) and N. glutinosa (subgenus Tabacum, 2n = 24), were examined during their development, from seedlings to mature plants. It was observed that in the hybrids, there was a progressive change of dominant N. glutinosa morphological characteristics towards those of N. suaveolens, in leaf shape, stem, flower color and branching pattern. A study of mitotic chromosomes in the root-tips and in very young anthers of the mature plants indicated a significantly high average frequency of aberrant mitotic anaphases (bridges and fragments, 12% and 11 % respectively). As a consequence of this phenomenon, variability in the number and size of chromosomes was observed in the PMC's and in mitotic metaphases (29-24 chromosomes). In order to establish whether the N. glufinosa chromosomes were preferentially last, a karyological study of the parents and their F, hybrids was carried out and it was established that the F, hybrids were losing N. glutinosa chromosomes preferentially. A mechanism was suggested for the loss of these chromosomes by means of a chromatid type of breakage-fusion-bridge cycle (b-f-b cycle) and initiation of the b-f-b cycle in the hybrid due to an interaction of the regulatory mechanism of DNA replication in the haploid genomes of the parental species. However, loss of these chromosomes owing to interaction of certain genes from the two parental species cannot be ruled out.


Plant Disease ◽  
2001 ◽  
Vol 85 (3) ◽  
pp. 335-335
Author(s):  
J. J. Tuset ◽  
R. Perucho

During the first four months of 2000, mature fruit of clementine cvs. Clemenules and Hernandina, mandarin cvs. Ortanique and Fortune, and orange cv. Navelina from several packinghouses located in Valencia Province were affected by a soft, watery, colorless or very light brown decay. The incidence of the decay was 5 to 12% in clementines and mandarins and 0.2 to 0.8% in oranges. A yeast was isolated consistently on potato-dextrose agar from affected tissues and from the juice of decayed fruits. Colonies of this yeast were butyrous, light cream in color, and smooth with a dry surface (or with a flattened center) and lobed margins with sparse, branched pseudohyphae. Some isolates that were light pink in color later turned cream colored. Yeast cells were ovoid to elongate, single or in pairs, with one or two buds at one end (multilateral budding). The cells were 1.1 to 5.7 μm × 3.2 to 12.8 μm. Ascospores were not observed. Fermentation and growth on carbon sources (several carbohydrates), growth on nitrogen sources (nitrate, cadaverine, L-lysine, etc.), requirement for vitamins, and growth at 40°C were used for identification. Based on the results of such tests and morphological characteristics, the fungus was identified as Issatchenkia orientalis Kudryavtsev (anamorph: Candida krusei (Castellani) Berkhout) (2). To satisfy Koch's postulates in pathogenicity tests, cells from pure cultures on agar or in orange juice were inoculated by hypodermic injection into the peel and flesh of oranges, clementines, mandarins, grapefruits, and lemons. After 10 to 20 days in a moist chamber at 24°C, a decay resembling symptoms that occurred in the packinghouse were observed in the inoculated fruits (1,3). The lemon fruits were the most affected. The fungus reisolated from decayed fruits was identical to the original isolates. This is the first report of this yeast as a decay of citrus produced in Europe. Climatic conditions (rainfall in spring and dry in summer and autumn) in citrus-growing areas in Spain, together with the presence of the Mediterranean fruit fly, may have been factors in disease development. A similar decay is caused by Geotrichum candidum, and previously this may have been mistaken for decay caused by I. orientalis. References: (1) P. R. Harding. Plant Dis. Rep. 52:433, 1968. (2) C. D. Kurtzman. 1998. The Yeasts, A Taxonomic Study. 4th ed. Elsevier Science, Amsterdam. (3) K. V. Shankhapal and V. G. Hatwalne. Plant Dis. Rep. 60:237, 1976.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ying Xin Fang ◽  
Jin Ling Li ◽  
Xiao Fei Li ◽  
Min Zhong Chen ◽  
Jia Yi Lin ◽  
...  

Patchouli (Pogostemon cablin Benth.) is a perennial herb native to South and South East Asia, which widely used as a traditional herbal medicine against indigestion, diarrhea, cold, fever, vomiting and headache in China (Swamy and Sinniah, 2015). In September 2020, a new basal stem and root rot disease of patchouli was observed in three cultivated fields of Zhanjiang City, Guangdong Province. Symptoms included sudden discoloration, chlorosis and wilting of the leaves and severe rot associated with external and internal browning at the basal part of stems and roots that results in the death of approximately 2 to 5% of plants in each field. To determine the causal agent, symptomatic roots with typical lesions were cut into small pieces, then surface sterilized in 2.5% NaClO for 1 min, rinsed three times in distilled water, and then inoculated on potato dextrose agar (PDA) medium. A fungus with same morphological characteristics was consistently isolated from disease tissue. The mycelia initially white to cream, later turning pale brown to black with age on PDA. To induce the sporulation, the isolated fungi were transferred to synthetic nutrient-poor agar (SNA) with autoclaved pine needles and ten pure cultures were obtained by single spores. Masses of black, hard and oblong microsclerotia (av. 171.2×136.5 µm, n=50) were observed on SNA. Conidia hyaline, ellipsoid to obovoid, smooth, enclosed in a mucous sheath, 15.9~32.5×7.7~11.9 µm (av. 23.9 × 9.6 µm, n=100). The internal transcribed spacer (ITS) regions as well as the partial translation elongation factor (EF-1α) and β-tubulin (TUB) genes of two representative isolates GHX-1 and CHX-2 were sequenced, using primer pairs ITS1/ITS4 (White et al. 1990), EF-688F/EF-986R (Carbone and Kohn 1999), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The obtained sequences were submitted to GenBank under the following accession numbers: ITS, MZ375360 and MZ375361; EF-1α, MZ393804 and MZ393805; and TUB, MZ393806 and MZ393807. BLASTn searches revealed that 100% identity with the existing sequences of ex-type culture CGMCC3.19503 of Macrophomina vaccinii (ITS, MK687450; EF-1α, MK687426; and TUB, MK687434), respectively. Phylogenetic analysis using Neighbour-Joining method in Mega7.0 with concatenated sequences of ITS, EF-1α and TUB showed that the isolates clustered in the clade of M. vaccinii with high bootstrap support values. Based on both of the morphological and molecular results, the isolates were identified as M. vaccinii (Zhao et al., 2019). To confirm the pathogenicity of the two isolates, 5-mm-diameter mycelial agar plus from the margins of 5-day-old PDA cultures were placed on the wounded basal stem of 2-month-old patchouli seedlings in each pot. Five separate pots were used for each isolate and plants inoculated with sterile agar plus were served as controls. All plants were covered with plastic bags to maintain 90% relative humidity and kept at 26°C with a photoperiod of 12 h in a greenhouse conditions. The patchouli plants developed similar necrotic symptoms on basal stem and root to those observed in the field after 3 weeks after inoculation, whereas the control plants were asymptomatic. M. vaccinii was reisolated from inoculated plants and identify by morphological and molecular characteristics, fulfill the Koch’s postulates and identify. Recently, stem blight on blueberry caused by M. vaccinii was reported in China (Zhao et al. 2019). To our knowledge, this is the first report of M. vaccinii causing basal stem and root rot on patchouli in China and worldwide.


2004 ◽  
Vol 70 (3) ◽  
pp. 1328-1335 ◽  
Author(s):  
Robert A. Blanchette ◽  
Benjamin W. Held ◽  
Joel A. Jurgens ◽  
Douglas L. McNew ◽  
Thomas C. Harrington ◽  
...  

ABSTRACT Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common.


1935 ◽  
Vol 61 (2) ◽  
pp. 247-260 ◽  
Author(s):  
Johannes K. Moen

1. Most isolated guinea pig mononuclear exudative cells in tissue culture become typical migrating macrophages, but a small proportion take on fibroblastic characteristics, and produce pure colonies of fibroblasts. These fibroblasts maintain their morphological characteristics through repeated subcultures. 2. It is suggested that the subsequent development of individual mononuclear cells in tissue culture is conditioned at the time of explantation. 3. Apposition with other cells is not necessary for the initiation of mitotic cellular division. 4. There is a definite optimal relationship between the bulk of the medium, the number of explanted cells and the extent of proliferation. The presence of other cells in the vicinity enhances cellular division. 5. Mitosis in the isolated explanted cell is preceded by a latent period. The rate of division varies in different colonies of fibroblasts. 6. Admixed erythrocytes in the mononuclear suspension definitely inhibit proliferation of fibroblasts in tissue culture. The inhibiting factor in disintegrating erythrocytes is apparently present in the stroma.


Sign in / Sign up

Export Citation Format

Share Document