Controlled transdermal delivery of model drug compounds by MEMS microneedle array

2005 ◽  
Vol 1 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Yu Xie ◽  
Bai Xu ◽  
Yunhua Gao
2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Vahid Alimardani ◽  
Samira Sadat Abolmaali ◽  
Gholamhossein Yousefi ◽  
Zahra Rahiminezhad ◽  
Mehdi Abedi ◽  
...  

Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs’ challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingbo Yang ◽  
Yanjun Li ◽  
Rui Ye ◽  
Ying Zheng ◽  
Xiangling Li ◽  
...  

AbstractThe incidence rate of diabetes has been increasing every year in nearly all nations and regions. The traditional control of diabetes using transdermal insulin delivery by metal needles is generally associated with pain and potential infections. While microneedle arrays (MAs) have emerged as painless delivery techniques, the integration of MA systems with electronic devices to precisely control drug delivery has rarely been realized. In this study, we developed an iontophoresis-microneedle array patch (IMAP) powered by a portable smartphone for the active and controllable transdermal delivery of insulin. The IMAP in situ integrates iontophoresis and charged nanovesicles into one patch, achieving a one-step drug administration strategy of “penetration, diffusion and iontophoresis”. The MA of the IMAP is first pressed on the skin to create microholes and then is retracted, followed by the iontophoresis delivery of insulin-loaded nanovesicles through these microholes in an electrically controlled manner. This method has synergistically and remarkably enhanced controlled insulin delivery. The amount of insulin can be effectively regulated by the IMAP by applying different current intensities. This in vivo study has demonstrated that the IMAP effectively delivers insulin and produces robust hypoglycemic effects in a type-1 diabetic rat model, with more advanced controllability and efficiency than delivery by a pristine microneedle or iontophoresis. The IMAP system shows high potential for diabetes therapy and the capacity to provide active as well as long-term glycemic regulation without medical staff care.


1994 ◽  
Vol 83 (9) ◽  
pp. 1213-1216 ◽  
Author(s):  
Ralph Tarantino ◽  
Edmund Bishop ◽  
Fang-Chung Chen ◽  
A. Waseem Malick ◽  
Khurshid Iqbal

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yan Deng ◽  
Jiao Chen ◽  
Yi Zhao ◽  
Xiaohui Yan ◽  
Li Zhang ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972110106
Author(s):  
Guiqin Liu ◽  
Yan Deng ◽  
Yi Song ◽  
Yi Sui ◽  
Juan Cen ◽  
...  

Thyroid associated ophthalmopathy (TAO) is an organ-specific autoimmune disease occurring in patients with thyroid disease. Patients with TAO-related proptosis is largely due to excessive orbital adipose tissue Adipocyte phospholipase A2 (AdPLA) is one of the most important regulatory factors in adipocyte lipolysis, which may be associated with TAO-related proptosis. Thus, silencing AdPLA by RNA interference may be beneficial for the treatment of TAO. In this study, we sought to evaluate the efficiency of two types of microneedles to deliver siRNAs for silencing AdPLA. Our results showed that AdPLA mRNA was up-regulated in the orbit adipose tissues from TAO patients. Silence of AdPLA by siRNA can reduce lipid accumulation in both human and mouse adipocyte cell lines. Moreover, silence effects of silicon microneedle array patch-based and injectable microneedle device-based siRNA administration were examined at the belly site of the mice, and injectable microneedle device showed higher knockdown efficiency than silicon microneedle array patch. This study sets the stage not only for future treatment of TAO-related proptosis using AdPLA siRNA, but also provides the foundation for targeted siRNA delivery by using microneedles.


2021 ◽  
Vol 23 (12) ◽  
pp. 401-416
Author(s):  
Snehal S. Patil ◽  
◽  
Nikita S. Patil ◽  
Umesh C. Suryawanshi ◽  
Mr. Rohan R. Vakhariya ◽  
...  

Drug delivery through the skin by transdermal patches has a long history. Subsequent growth of transdermal science proved prominent utility of transdermal systems meant for passive diffusion of the drug. It was followed by the development of Iontophoresis and Sonophoresis based transdermal delivery systems. Microneedle array has now caught attention of the investigators owing to its immense utility in transdermal delivery of very large molecules with ionic and hydrophilic nature. In this technical note, we present the current scenario, applications, and recent advances in microneedle array-based delivery of the most critical molecules through the skin. The application of microneedle has widely been investigated, and these technologies are being developed for the delivery of bio-therapeutics, biomacromolecules, insulin, growth hormones, immunobiologicals, proteins, siRNA and peptides. Potential of microneedles to transform the global transdermal market is highlighted in terms of the success rate of the microneedle technologies in clinical trials reaching to the global market. The arrival of the commercial microneedle-based products in the market is highly anticipated as they have potential to portray remarkable impact on clinical medicine in near future.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 69-72
Author(s):  
Rajesh Sreedharan Nair ◽  
Manickam Balamurugan ◽  
Meng Sheng Teng

Drug permeation through the skin layers remains a major challenge in transdermal drug delivery. In this study, the permeation enhancing property of chitosan together with its rate-controlling property has been utilized in the development of an efficient transdermal delivery system, using captopril as a model drug. Chitosan-hydroxypropyl methylcellulose (HPMC) films were developed by solvent evaporation technique. The films were characterized for appearance, thickness, weight uniformity, drug content, folding endurance and moisture absorption. Drug-polymer interaction was assessed using ATR-FTIR spectroscopy and Differential Scanning Calorimetry. The in vitro permeation carried out in Franz-type diffusion cells using synthetic Strat-M® membrane, demonstrated that the film coded F2 (Chitosan:HPMC = 50:50) showed a significant increase in drug permeation than F1 (Chitosan:HPMC = 90:10) with a flux value 86.7 µg/cm2/h. The physicochemical characterization and the stability studies confirmed that the formulated films were chemically and physically stable.


Sign in / Sign up

Export Citation Format

Share Document