Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting

Nano Energy ◽  
2018 ◽  
Vol 44 ◽  
pp. 279-287 ◽  
Author(s):  
Chaoxing Wu ◽  
Tae Whan Kima ◽  
Sihyun Sung ◽  
Jae Hyeon Park ◽  
Fushan Li
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5600
Author(s):  
Ali Matin Matin Nazar ◽  
King-James Idala Idala Egbe ◽  
Azam Abdollahi ◽  
Mohammad Amin Hariri-Ardebili

With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric nanogenerators and magnetic intensity are investigated as an efficient technique to improve their performance. Advantages and disadvantages of different TENG structures are explored. A high level overview is provided on the connection of TENGs with structural health monitoring, artificial intelligence and the path forward.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17437-17444
Author(s):  
Guoxia Li ◽  
Longwei Li ◽  
Panpan Zhang ◽  
Caiyun Chang ◽  
Fan Xu ◽  
...  

An ultra-stretchable and self-healing hydrogel is developed with graphene oxide and Laponite as collaborative physical crosslinking points, which is utilized in triboelectric nanogenerators for mechanical energy harvesting and self-powered sensing.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4980
Author(s):  
Tiago Rodrigues-Marinho ◽  
Nelson Castro ◽  
Vitor Correia ◽  
Pedro Costa ◽  
Senentxu Lanceros-Méndez

Energy harvesting systems for low-power devices are increasingly being a requirement within the context of the Internet of Things and, in particular, for self-powered sensors in remote or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting environmental mechanical energy otherwise wasted in nature. This work reports on the evaluation of the output power of different polymer and polymer composites, by using the triboelectric contact-separation systems (10 N of force followed by 5 cm of separation per cycle). Different materials were used as positive (Mica, polyamide (PA66) and styrene/ethylene-butadiene/styrene (SEBS)) and negative (polyvinylidene fluoride (PVDF), polyurethane (PU), polypropylene (PP) and Kapton) charge materials. The obtained output power ranges from 0.2 to 5.9 mW, depending on the pair of materials, for an active area of 46.4 cm2. The highest response was obtained for Mica with PVDF composites with 30 wt.% of barium titanate (BT) and PA66 with PU pairs. A simple application has been developed based on vertical contact-separation mode, able to power up light emission diodes (LEDs) with around 30 cycles to charge a capacitor. Further, the capacitor can be charged in one triboelectric cycle if an area of 0.14 m2 is used.


2017 ◽  
Vol 5 (24) ◽  
pp. 12252-12257 ◽  
Author(s):  
Meng Wang ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Heng Zhang ◽  
Chuan Ning ◽  
...  

A single-electrode triboelectric nanogenerator (S-TENG) based on sponge-like porous polytetrafluoroethylene (PTFE) thin films was developed.


2019 ◽  
Vol 12 (8) ◽  
pp. 2417-2421 ◽  
Author(s):  
Andris Šutka ◽  
Kaspars Mālnieks ◽  
Linards Lapčinskis ◽  
Paula Kaufelde ◽  
Artis Linarts ◽  
...  

The present study reports the origin of surface charge on the polymer surface upon triboelectrification and is a step forward towards the development of next generation of mechanical energy harvesting systems.


Sign in / Sign up

Export Citation Format

Share Document