scholarly journals The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators

2019 ◽  
Vol 12 (8) ◽  
pp. 2417-2421 ◽  
Author(s):  
Andris Šutka ◽  
Kaspars Mālnieks ◽  
Linards Lapčinskis ◽  
Paula Kaufelde ◽  
Artis Linarts ◽  
...  

The present study reports the origin of surface charge on the polymer surface upon triboelectrification and is a step forward towards the development of next generation of mechanical energy harvesting systems.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4980
Author(s):  
Tiago Rodrigues-Marinho ◽  
Nelson Castro ◽  
Vitor Correia ◽  
Pedro Costa ◽  
Senentxu Lanceros-Méndez

Energy harvesting systems for low-power devices are increasingly being a requirement within the context of the Internet of Things and, in particular, for self-powered sensors in remote or inaccessible locations. Triboelectric nanogenerators are a suitable approach for harvesting environmental mechanical energy otherwise wasted in nature. This work reports on the evaluation of the output power of different polymer and polymer composites, by using the triboelectric contact-separation systems (10 N of force followed by 5 cm of separation per cycle). Different materials were used as positive (Mica, polyamide (PA66) and styrene/ethylene-butadiene/styrene (SEBS)) and negative (polyvinylidene fluoride (PVDF), polyurethane (PU), polypropylene (PP) and Kapton) charge materials. The obtained output power ranges from 0.2 to 5.9 mW, depending on the pair of materials, for an active area of 46.4 cm2. The highest response was obtained for Mica with PVDF composites with 30 wt.% of barium titanate (BT) and PA66 with PU pairs. A simple application has been developed based on vertical contact-separation mode, able to power up light emission diodes (LEDs) with around 30 cycles to charge a capacitor. Further, the capacitor can be charged in one triboelectric cycle if an area of 0.14 m2 is used.


2021 ◽  
Vol 30 (1/2) ◽  
pp. 12-19
Author(s):  
Woongbi CHO ◽  
Jeong Jae WIE

Triboelectric nanogenerators (TENGs) are eco-friendly energy-harvesting systems that produce electrical energy from disordered mechanical energy. To enhance the triboelectric performances of TENGs, many researchers have conducted in-depth studies of the polymer materials utilized in TENGs, so numerous studies have been reported on the relationship between their material properties and their energy-harvesting capabilities. Triboelectric performance depends on the electrical properties of the materials used, such as their electron affinities and dielectric constants. Representative examples of positive and negative tribomaterials include PA6, PEO, PVDF, and fluorinated sulfur copolymers, respectively. This article introduces the relationship among the compositions, structures, triboelectric performances of the polymer materials, and composites used in TENGs and summarizes the representative polymer materials applied in the latest TENGs.


Nano Energy ◽  
2018 ◽  
Vol 44 ◽  
pp. 279-287 ◽  
Author(s):  
Chaoxing Wu ◽  
Tae Whan Kima ◽  
Sihyun Sung ◽  
Jae Hyeon Park ◽  
Fushan Li

Nano Energy ◽  
2016 ◽  
Vol 21 ◽  
pp. 238-246 ◽  
Author(s):  
Ting-Hao Chang ◽  
Yin-Wei Peng ◽  
Chuan-Hua Chen ◽  
Ting-Wei Chang ◽  
Jyh-Ming Wu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5600
Author(s):  
Ali Matin Matin Nazar ◽  
King-James Idala Idala Egbe ◽  
Azam Abdollahi ◽  
Mohammad Amin Hariri-Ardebili

With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric nanogenerators and magnetic intensity are investigated as an efficient technique to improve their performance. Advantages and disadvantages of different TENG structures are explored. A high level overview is provided on the connection of TENGs with structural health monitoring, artificial intelligence and the path forward.


2018 ◽  
Vol 210 ◽  
pp. 02053
Author(s):  
Zdeněk Machů ◽  
Zdeněk Majer ◽  
Oldřich Ševeček ◽  
Kateřina Štegnerová ◽  
Zdeněk Hadaš

This paper addresses an important issue of the individual layer thickness influence in a multilayer piezo composite on electro-mechanical energy conversion. The use of energy harvesting systems seems to be very promising for applications such as ultra-low power electronics, sensors and wireless communication. The energy converters are often disabled due to a failure of the piezo layer caused by an excessive deformation/stresses occurring upon the operation. It is thus desirable to increase both reliability and efficiency of the electromechanical conversion as compared to standard concepts. The proposed model of the piezoelectric vibration energy harvester is based on a multilayer beam design with active piezo and protective ceramic layers. This paper presents results of a comparative study of an analytical and numerical approach used for the electro-mechanical simulations of the multilayer energy harvesting systems. Development of the functional analytical model is crucial for the further optimization of new (smart material based) energy harvesting systems, since it provides much faster response than the numerical model.


2018 ◽  
Vol 6 (6) ◽  
pp. 958-997 ◽  
Author(s):  
Navjot Kaur ◽  
Kaushik Pal

Sign in / Sign up

Export Citation Format

Share Document