scholarly journals Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes

Nano Energy ◽  
2020 ◽  
Vol 75 ◽  
pp. 104958 ◽  
Author(s):  
Pengfei Zhao ◽  
Gourav Bhattacharya ◽  
Sam J. Fishlock ◽  
Joseph G.M. Guy ◽  
Amit Kumar ◽  
...  
2012 ◽  
Vol 1402 ◽  
Author(s):  
Kanan Puntambekar ◽  
Lisa Stecker ◽  
Kurt Ulmer ◽  
Themistokles Afentakis ◽  
Steven Droes

ABSTRACTOptimization of the interface between the organic semiconductor (OSC) & the source-drain (S/D) electrode is critical in order to improve organic thin film transistor (OTFT) device performance. This process typically involves coating the metal S/D electrodes with an optimal self-assembled thiol layer; a process that requires pristine metal surfaces for successful treatment. Obtaining contamination free surfaces can be challenging in the case of printed metal electrodes. Here we demonstrate an effective strategy to address this issue by introducing a brief low power forming gas plasma treatment prior to the surface coating step. We show a two orders of magnitude decrease in the contact resistance as a result of this treatment.


Nano Energy ◽  
2021 ◽  
pp. 106256
Author(s):  
Yongteng Qian ◽  
Jianmin Yu ◽  
Fangfang Zhang ◽  
Yingbo Kang ◽  
Chenliang Su ◽  
...  

2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


2019 ◽  
Vol 104 (5-8) ◽  
pp. 2633-2644 ◽  
Author(s):  
Chih-Chieh Chang ◽  
Jian-Fu Shih ◽  
Yuang-Cherng Chiou ◽  
Rong-Tsong Lee ◽  
Shih-Feng Tseng ◽  
...  

2018 ◽  
Vol 115 (22) ◽  
pp. 5676-5680 ◽  
Author(s):  
Qiuwei Shi ◽  
Yiren Zhong ◽  
Min Wu ◽  
Hongzhi Wang ◽  
Hailiang Wang

Discovering new chemistry and materials to enable rechargeable batteries with higher capacity and energy density is of paramount importance. While Li metal is the ultimate choice of a battery anode, its low efficiency is still yet to be overcome. Many strategies have been developed to improve the reversibility and cycle life of Li metal electrodes. However, almost all of the results are limited to shallow cycling conditions (e.g., 1 mAh cm−2) and thus inefficient utilization (<1%). Here we achieve Li metal electrodes that can be deeply cycled at high capacities of 10 and 20 mAh cm−2 with average Coulombic efficiency >98% in a commercial LiPF6/carbonate electrolyte. The high performance is enabled by slow release of LiNO3 into the electrolyte and its subsequent decomposition to form a Li3N and lithium oxynitrides (LiNxOy)-containing protective layer which renders reversible, dendrite-free, and highly dense Li metal deposition. Using the developed Li metal electrodes, we construct a Li-MoS3 full cell with the anode and cathode materials in a close-to-stoichiometric amount ratio. In terms of both capacity and energy, normalized to either the electrode area or the total mass of the electrode materials, our cell significantly outperforms other laboratory-scale battery cells as well as the state-of-the-art Li ion batteries on the market.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinmei Liu ◽  
Long Gu ◽  
Nuanyang Cui ◽  
Qi Xu ◽  
Yong Qin ◽  
...  

In the past decades, the progress of wearable and portable electronics is quite rapid, but the power supply has been a great challenge for their practical applications. Wearable power sources, especially wearable energy-harvesting devices, provide some possible solutions for this challenge. Among various wearable energy harvesters, the high-performance fabric-based triboelectric nanogenerators (TENGs) are particularly significant. In this review paper, we first introduce the fundamentals of TENGs and their four basic working modes. Then, we will discuss the material synthesis, device design, and fabrication of fabric-based TENGs. Finally, we try to give some problems that need to be solved for the further development of TENGs.


Sign in / Sign up

Export Citation Format

Share Document