Sericin as medium supplement for hiPS cell culture

2016 ◽  
Vol 33 ◽  
pp. S188
Author(s):  
Satoshi Terada ◽  
Koki Okumoto ◽  
Noriyuki Shindoh ◽  
Ken Fukumoto ◽  
Masahiro Sasaki ◽  
...  
1998 ◽  
Vol 3 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Eun Jeong Kim ◽  
Ji-Young Choi ◽  
Sam-Eun Kim ◽  
Tai Hyun Park

Platelets ◽  
2013 ◽  
Vol 25 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Anita Muraglia ◽  
Chiara Ottonello ◽  
Raffaele Spanò ◽  
Beatrice Dozin ◽  
Paolo Strada ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Younsik Jeong ◽  
Woon-Yong Choi ◽  
Areumi Park ◽  
Yeon-Ji Lee ◽  
Youngdeuk Lee ◽  
...  

AbstractSerum is a stable medium supplement for in vitro cell culture. Live cells are used in stem cell research, drug toxicity and safety testing, disease diagnosis and prevention, and development of antibiotics, drugs, and vaccines. However, use of serum in culture involves concerns such as an ethical debate regarding the collection process, lack of standardized ingredients, and high cost. Herein, therefore, we evaluated the possibility of using edible cyanobacterium (Spirulina maxima), which is a nutrient-rich, sustainable, and ethically acceptable source, as a novel substitute for fetal bovine serum (FBS). H460 cells were cultured to the 10th generation by adding a mixture of spirulina animal cell culture solution (SACCS) and FBS to the culture medium. Cell morphology and viability, cell cycle, apoptosis, proteomes, and transcriptomes were assessed. We observed that SACCS had better growth-promoting capabilities than FBS. Cell proliferation was promoted even when FBS was replaced by 50–70% SACCS; there was no significant difference in cell shape or viability. There were only slight differences in the cell cycle, apoptosis, proteomes, and transcriptomes of the cells grown in presence of SACCS. Therefore, SACCS has the potential to be an effective, low-cost, and eco-friendly alternative to FBS in in vitro culture.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


2007 ◽  
Vol 177 (4S) ◽  
pp. 260-260 ◽  
Author(s):  
Hiroaki Kawanishi ◽  
Yoshiyuki Matsui ◽  
Toshinari Yamasaki ◽  
Takeshi Takahashi ◽  
Hiroyuki Nishiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document