scholarly journals Mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading

2015 ◽  
Vol 47 (5) ◽  
pp. 633-645 ◽  
Author(s):  
Chaobi Zhang ◽  
Jianyun Chen ◽  
Qiang Xu ◽  
Jing Li
PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


2005 ◽  
Vol 32 (3) ◽  
pp. 463-479 ◽  
Author(s):  
Marc-André Bérubé ◽  
Nizar Smaoui ◽  
Benoit Fournier ◽  
Benoit Bissonnette ◽  
Benoit Durand

The expansion attained by a concrete affected by alkali-silica reaction (ASR) is an important parameter in the evaluation of the corresponding structure. In part I, relationships were established in the laboratory between the ASR expansion and the stiffness damage test (SDT), the damage rating index (DRI), and the cumulated width of cracks observed at the surface of concrete specimens made with various types of reactive aggregates. In part II, these relationships were verified in the case of specimens made in laboratory but exposed outdoors. In part III, the aforementioned methods were applied to three ASR-affected structures. The measurement of crack widths at the surface of the affected members allowed a rather good estimation of the concrete expansion, provided the measurements were taken on the most severely exposed sections of these members. The DRI did not allow differentiating the most visually and mechanically affected concretes from the least affected concretes. The SDT proved to be the most interesting method to date for evaluating the expansion of ASR-affected concrete; however, it seemed to underestimate the expansion of the prestressed concrete members investigated.Key words: aggregates, alkali–silica reaction, concrete, petrography, expansion, stiffness, cracking.


Sign in / Sign up

Export Citation Format

Share Document