scholarly journals The mechanical and thermodynamic properties of α-Na3(U0.84(2),Na0.16(2))O4: A combined first-principles calculations and quasi-harmonic Debye model study

Author(s):  
Haichuan Chen
2016 ◽  
Vol 30 (35) ◽  
pp. 1650414 ◽  
Author(s):  
Mingliang Wang ◽  
Zhe Chen ◽  
Dong Chen ◽  
Cunjuan Xia ◽  
Yi Wu

The structural, elastic and thermodynamic properties of the A15 structure V3Ir, V3Pt and V3Au were studied using first-principles calculations based on the density functional theory (DFT) within generalized gradient approximation (GGA) and local density approximation (LDA) methods. The results have shown that both GGA and LDA methods can process the structural optimization in good agreement with the available experimental parameters in the compounds. Furthermore, the elastic properties and Debye temperatures estimated by LDA method are typically larger than the GGA methods. However, the GGA methods can make better prediction with the experimental values of Debye temperature in V3Ir, V3Pt and V3Au, signifying the precision of the calculating work. Based on the E–V data derived from the GGA method, the variations of the Debye temperature, coefficient of thermal expansion and heat capacity under pressure ranging from 0 GPa to 50 GPa and at temperature ranging from 0 K to 1500 K were obtained and analyzed for all compounds using the quasi-harmonic Debye model.


2011 ◽  
Vol 268-270 ◽  
pp. 886-891
Author(s):  
Ben Hai Yu ◽  
Dong Chen

the equilibrium lattice constants, elastic and thermodynamic properties of cubic CdTe are systemically investigated at high temperature using the plane-wave pseudopotential method as well as the quasi-harmonic Debye model. The bulk modulus of CdTe are calculated as a function of temperature up to 1000K, the relationship between bulk modulusBand pressure is also obtained. The results gained from this model will provide overall predictions accurately for the temperature and pressure dependence of various quantities such as the bulk modulus, the heat capacity and the thermal expansion coefficient. More over, the dependences between Debye temperature and temperature are also successfully obtained. Our results are compared with the experimental data and discussed in light of previous works.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341035 ◽  
Author(s):  
YONG CAO ◽  
JINGCHUAN ZHU ◽  
YONG LIU ◽  
ZHISHEN LONG

Through the quasi-harmonic Debye model, the pressure and temperature dependences of linear expansion coefficient, bulk modulus, Debye temperature and heat capacity have been investigated. The calculated thermodynamic properties were compared with experimental data and satisfactory agreement is reached.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 52-60
Author(s):  
Li-Qin Zhang ◽  
Yan Cheng ◽  
Zhen-Wei Niu ◽  
Guang-Fu Ji

The structural stability, thermodynamic, elastic, and electronic properties of cerium (Ce)- lanthanum (La) alloys were investigated for different Ce/La ratios under pressure by first-principles calculations using on-the-fly (OTF) pseudopotential and general gradient approximation (GGA). The ground-state properties of lanthanum and cerium obtained by minimizing the total energy agree favourably with other work.We derived the elastic constants, bulk modulus, and shear modulus of the La-Ce alloys for different Ce/La ratios. Using the quasi-harmonic Debye model, the thermodynamic properties of the La-Ce alloys including the thermal expansion coefficient α and heat capacity Cv are successfully obtained in the temperature range from 0 K to 1000 K. Furthermore, the electronic properties such as density of states and charge densities were also studied.


2018 ◽  
Vol 32 (22) ◽  
pp. 1850246
Author(s):  
Yan Li ◽  
Yuhong Zhao ◽  
Hua Hou ◽  
Xiaomin Yang

The structural, elastic and thermodynamic properties of Mg2Si, Mg2Sn, CaMgSi and MgSnSr phases in Mg–Sn–Si–Ca(Sr) alloys have been investigated by implementing first-principles calculations. Formation enthalpies and cohesive energies show that MgSnSr has the strongest alloying ability and CaMgSi has the highest structural stability. The bulk modulus B, shear modulus G, Young’s modulus E, G/B, Poisson ratio [Formula: see text], anisotropy index A[Formula: see text] are estimated after evaluating the elastic constants. The mechanical properties are further analyzed and discussed. Finally, the Gibbs free energy and Debye temperature of these phases are calculated by means of the quasi-harmonic Debye model in temperature ranging from 0 K to 1000 K.


2015 ◽  
Vol 7 (3) ◽  
pp. 53-64 ◽  
Author(s):  
M. A. Rayhan ◽  
M. A. Ali ◽  
S. H. Naqib ◽  
A. K. M. A. Islam

We have investigated Vickers hardness and the thermodynamic properties of the recently discovered nanolaminate carbide Ti3SnC2 polymorphs using the first-principles calculations. The chemical bonding shows a combination of covalent, ionic and metallic types. The strong covalent bonding is mainly responsible for high Vickers hardness of Ti3SnC2 polymorphs. Thermodynamic properties are studied using the quasi-harmonic Debye model. The variation of bulk modulus, thermal expansion coefficient, specific heats, and Debye temperature with applied pressure (P) and temperature (T) are investigated systematically within the ranges of 0 - 50 GPa and 0 - 1000 K. The calculated results have been compared with available experimental and theoretical data.


2016 ◽  
Vol 71 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Qun Wei ◽  
Haiyan Yan ◽  
Xuanmin Zhu ◽  
Zhengzhe Lin ◽  
Ronghui Yao

AbstractStructural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re2P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re2P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grüneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
GuoWei Zhang ◽  
Chao Xu ◽  
MingJie Wang ◽  
Ying Dong ◽  
FengEr Sun ◽  
...  

AbstractFirst principle calculations were performed to investigate the structural, mechanical, electronic properties, and thermodynamic properties of three binary Mg–B compounds under pressure, by using the first principle method. The results implied that the structural parameters and the mechanical properties of the Mg–B compounds without pressure are well matched with the obtainable theoretically simulated values and experimental data. The obtained pressure–volume and energy–volume revealed that the three Mg–B compounds were mechanically stable, and the volume variation decreases with an increase in the boron content. The shear and volume deformation resistance indicated that the elastic constant Cij and bulk modulus B increased when the pressure increased up to 40 GPa, and that MgB7 had the strongest capacity to resist shear and volume deformation at zero pressure, which indicated the highest hardness. Meanwhile, MgB4 exhibited a ductility transformation behaviour at 30 GPa, and MgB2 and MgB7 displayed a brittle nature under all the considered pressure conditions. The anisotropy of the three Mg–B compounds under pressure were arranged as follows: MgB4 > MgB2 > MgB7. Moreover, the total density of states varied slightly and decreased with an increase in the pressure. The Debye temperature ΘD of the Mg–B compounds gradually increased with an increase in the pressure and the boron content. The temperature and pressure dependence of the heat capacity and the thermal expansion coefficient α were both obtained on the basis of Debye model under increased pressure from 0 to 40 GPa and increased temperatures. This paper brings a convenient understanding of the magnesium–boron alloys.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Menouer ◽  
O. Miloud Abid ◽  
A. Benzair ◽  
A. Yakoubi ◽  
H. Khachai ◽  
...  

AbstractIn recent years the intermetallic ternary RE2MgGe2 (RE = rare earth) compounds attract interest in a variety of technological areas. We therefore investigate in the present work the structural, electronic, magnetic, and thermodynamic properties of Nd2MgGe2 and Gd2MgGe2. Spin–orbit coupling is found to play an essential role in realizing the antiferromagnetic ground state observed in experiments. Both materials show metallicity and application of a Debye-Slater model demonstrates low thermal conductivity and little effects of the RE atom on the thermodynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document