Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation

2013 ◽  
Vol 118 ◽  
pp. 179-190 ◽  
Author(s):  
Xiao-li Li ◽  
Li-hong Li ◽  
Bao-lin Zhang ◽  
Qian-jin Guo
Author(s):  
JIANSHENG WU ◽  
MINGZHE LIU ◽  
LONG JIN

In this paper, a hybrid rainfall-forecasting approach is proposed which is based on support vector regression, particle swarm optimization and projection pursuit technology. The projection pursuit technology is used to reduce dimensions of parameter spaces in rainfall forecasting. The particle swarm optimization algorithm is for searching the parameters for support vector regression model and to construct the support vector regression model. The observed data of daily rainfall values in Guangxi (China) is used as a case study for the proposed model. The computing results show that the present model yields better forecasting performance in this case study, compared to other rainfall-forecasting models. Our model may provide a promising alternative for forecasting rainfall application.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Li ◽  
Di Liu ◽  
Shuai Ren ◽  
Hong-gen Zhou ◽  
Jiasheng Zhou

Thin plates are widely utilized in aircraft, shipbuilding, and automotive industries to meet the requirements of lightweight components. Especially in modern shipbuilding, the thin plate structures not only meet the economic requirements of shipbuilding but also meet the strength and rigidity requirements of the ship. However, a thin plate is less stable and prone to destabilizing deformation in the welding process, which seriously affects the accuracy and performance of the thin plate welding structure. Therefore, it is beneficial to predict welding deformation and residual stress before welding. In this paper, a thin plate welding deformation and residual stress prediction model based on particle swarm optimization (PSO) and grid search(GS) improved support vector regression (PSO-GS-SVR) is established. The welding speed, welding current, welding voltage, and plate thickness are taken as input parameters of the improved support vector regression model, while longitudinal and transverse deformation and residual stress are taken as corresponding outputs. To improve the prediction accuracy of the support vector regression model, particle swarm optimization and grid search are used to optimize the parameters. The results show that the improved support regression model can accurately evaluate the deformation and residual stress of butt welding and has important engineering guiding significance.


Sign in / Sign up

Export Citation Format

Share Document