Hybrid Interpretable Predictive Machine Learning Model for Air Pollution Prediction

2021 ◽  
Author(s):  
Yuanlin Gu ◽  
Baihua Li ◽  
Qinggang Meng
2020 ◽  
Vol 10 (7) ◽  
pp. 2401 ◽  
Author(s):  
Ditsuhi Iskandaryan ◽  
Francisco Ramos ◽  
Sergio Trilles

The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features.


2019 ◽  
Vol 8 (2) ◽  
pp. 99 ◽  
Author(s):  
Mahmoud Delavar ◽  
Amin Gholami ◽  
Gholam Shiran ◽  
Yousef Rashidi ◽  
Gholam Nakhaeizadeh ◽  
...  

Environmental pollution has mainly been attributed to urbanization and industrial developments across the globe. Air pollution has been marked as one of the major problems of metropolitan areas around the world, especially in Tehran, the capital of Iran, where its administrators and residents have long been struggling with air pollution damage such as the health issues of its citizens. As far as the study area of this research is concerned, a considerable proportion of Tehran air pollution is attributed to PM10 and PM2.5 pollutants. Therefore, the present study was conducted to determine the prediction models to determine air pollutions based on PM10 and PM2.5 pollution concentrations in Tehran. To predict the air-pollution, the data related to day of week, month of year, topography, meteorology, and pollutant rate of two nearest neighbors as the input parameters and machine learning methods were used. These methods include a regression support vector machine, geographically weighted regression, artificial neural network and auto-regressive nonlinear neural network with an external input as the machine learning method for the air pollution prediction. A prediction model was then proposed to improve the afore-mentioned methods, by which the error percentage has been reduced and improved by 57%, 47%, 47% and 94%, respectively. The most reliable algorithm for the prediction of air pollution was autoregressive nonlinear neural network with external input using the proposed prediction model, where its one-day prediction error reached 1.79 µg/m3. Finally, using genetic algorithm, data for day of week, month of year, topography, wind direction, maximum temperature and pollutant rate of the two nearest neighbors were identified as the most effective parameters in the prediction of air pollution.


2021 ◽  
pp. 17-27
Author(s):  
Sheethal Shivakumar ◽  
K. Aditya Shastry ◽  
Simranjith Singh ◽  
Salman Pasha ◽  
B. C. Vinay ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3803
Author(s):  
Rochelle Schneider ◽  
Ana M. Vicedo-Cabrera ◽  
Francesco Sera ◽  
Pierre Masselot ◽  
Massimo Stafoggia ◽  
...  

Epidemiological studies on the health effects of air pollution usually rely on measurements from fixed ground monitors, which provide limited spatio-temporal coverage. Data from satellites, reanalysis, and chemical transport models offer additional information used to reconstruct pollution concentrations at high spatio-temporal resolutions. This study aims to develop a multi-stage satellite-based machine learning model to estimate daily fine particulate matter (PM2.5) levels across Great Britain between 2008–2018. This high-resolution model consists of random forest (RF) algorithms applied in four stages. Stage-1 augments monitor-PM2.5 series using co-located PM10 measures. Stage-2 imputes missing satellite aerosol optical depth observations using atmospheric reanalysis models. Stage-3 integrates the output from previous stages with spatial and spatio-temporal variables to build a prediction model for PM2.5. Stage-4 applies Stage-3 models to estimate daily PM2.5 concentrations over a 1 km grid. The RF architecture performed well in all stages, with results from Stage-3 showing an average cross-validated R2 of 0.767 and minimal bias. The model performed better over the temporal scale when compared to the spatial component, but both presented good accuracy with an R2 of 0.795 and 0.658, respectively. These findings indicate that direct satellite observations must be integrated with other satellite-based products and geospatial variables to derive reliable estimates of air pollution exposure. The high spatio-temporal resolution and the relatively high precision allow these estimates (approximately 950 million points) to be used in epidemiological analyses to assess health risks associated with both short- and long-term exposure to PM2.5.


Author(s):  
Shreyas Simu ◽  
Varsha Turkar ◽  
Rohit Martires ◽  
Vranda Asolkar ◽  
Swizel Monteiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document