scholarly journals Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Chen Wang ◽  
Jie Wu ◽  
Jianzhou Wang ◽  
Zhongjin Hu

Power systems could be at risk when the power-grid collapse accident occurs. As a clean and renewable resource, wind energy plays an increasingly vital role in reducing air pollution and wind power generation becomes an important way to produce electrical power. Therefore, accurate wind power and wind speed forecasting are in need. In this research, a novel short-term wind speed forecasting portfolio has been proposed using the following three procedures: (I) data preprocessing: apart from the regular normalization preprocessing, the data are preprocessed through empirical model decomposition (EMD), which reduces the effect of noise on the wind speed data; (II) artificially intelligent parameter optimization introduction: the unknown parameters in the support vector machine (SVM) model are optimized by the cuckoo search (CS) algorithm; (III) parameter optimization approach modification: an improved parameter optimization approach, called the SDCS model, based on the CS algorithm and the steepest descent (SD) method is proposed. The comparison results show that the simple and effective portfolio EMD-SDCS-SVM produces promising predictions and has better performance than the individual forecasting components, with very small root mean squared errors and mean absolute percentage errors.

Author(s):  
Jian He ◽  
Jingle Xu

Abstract The accuracy of wind power prediction is very important for the stable operation of a power system. Ultra-short-term wind speed forecasting is an effective way to ensure real-time and accurate wind power prediction. In this paper, a short-term wind speed forecasting method based on a support vector machine with a combined kernel function and similar data is proposed. Similar training data are selected based on the wind tendency, and a combination of two kinds of kernel functions is applied in forecasting using a support vector machine. The forecasting results for a wind farm in Ningxia Province indicate that a combination of kernel functions with complementary advantages outperforms each single function, and forecasting models based on grouped wind data with a similar tendency could reduce the forecasting error. Furthermore, more accurate wind forecasting results ensure better wind power prediction.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6319
Author(s):  
Chia-Sheng Tu ◽  
Chih-Ming Hong ◽  
Hsi-Shan Huang ◽  
Chiung-Hsing Chen

This paper presents a short-term wind power forecasting model for the next day based on historical marine weather and corresponding wind power output data. Due the large amount of historical marine weather and wind power data, we divided the data into clusters using the data regression (DR) algorithm to get meaningful training data, so as to reduce the number of modeling data and improve the efficiency of computing. The regression model was constructed based on the principle of the least squares support vector machine (LSSVM). We carried out wind speed forecasting for one hour and one day and used the correlation between marine wind speed and the corresponding wind power regression model to realize an indirect wind power forecasting model. Proper parameter settings for LSSVM are important to ensure its efficiency and accuracy. In this paper, we used an enhanced bee swarm optimization (EBSO) to perform the parameter optimization for LSSVM, which not only improved the forecast model availability, but also improved the forecasting accuracy.


2019 ◽  
Vol 11 (3) ◽  
pp. 652 ◽  
Author(s):  
Qunli Wu ◽  
Huaxing Lin

With the integration of wind energy into electricity grids, wind speed forecasting plays an important role in energy generation planning, power grid integration and turbine maintenance scheduling. This study proposes a hybrid wind speed forecasting model to enhance prediction performance. Variational mode decomposition (VMD) was applied to decompose the original wind speed series into different sub-series with various frequencies. A least squares support vector machine (LSSVM) model with the pertinent parameters being optimized by a bat algorithm (BA) was established to forecast those sub-series extracted from VMD. The ultimate forecast of wind speed can be obtained by accumulating the prediction values of each sub-series. The results show that: (a) VMD-BA-LSSVM displays better capacity for the prediction of ultra short-term (15 min) and short-term (1 h) wind speed forecasting; (b) the proposed forecasting model was compared with wavelet decomposition (WD) and ensemble empirical mode decomposition (EEMD), and the results indicate that VMD has stronger decomposition ability than WD and EEMD, thus, significant improvements in forecasting accuracy were obtained with the proposed forecasting models compared with other forecasting methods.


Renewable energy has recently gained considerable attention. In particular, interest in wind energy is rapidly increasing globally. However, the characteristics of instability and volatility in wind energy systems also have a significant on power systems. To address these issues, numerous studies have been carried out to predict wind speed and power. Methods used to forecast wind energy are divided into three categories: physical, data-driven (statistical and artificial intelligence methods), and hybrid methods. In this study, among artificial intelligence methods, we compare short-term wind power using a support vector machine (SVM) and long short-term memory (LSTM). The method using an SVM is a short-term wind power forecast that considers the wind speed and direction on Jeju Island, whereas the method using LSTM does not consider the wind speed and direction. As the experiment results indicate, the SVM method achieves an excellent performance when considering the wind speed and direction.


2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


2014 ◽  
Vol 511-512 ◽  
pp. 927-930
Author(s):  
Shuai Zhang ◽  
Hai Rui Wang ◽  
Jin Huang ◽  
He Liu

In the paper, the forecast problems of wind speed are considered. In order to enhance the redaction accuracy of the wind speed, this article is about a research on particle swarm optimization least square support vector machine for short-term wind speed prediction (PSO-LS-SVM). Firstly, the prediction models are built by using least square support vector machine based on particle swarm optimization, this model is used to predict the wind speed next 48 hours. In order to further improve the prediction accuracy, on this basis, introduction of the offset optimization method. Finally large amount of experiments and measurement data comparison compensation verify the effectiveness and feasibility of the research on particle swarm optimization least square support vector machine for short-term wind speed prediction, Thereby reducing the short-term wind speed prediction error, very broad application prospects.


Sign in / Sign up

Export Citation Format

Share Document