Bioluminescence imaging of Arc gene expression detects neural activity-dependent changes in vivo

2010 ◽  
Vol 68 ◽  
pp. e445
Author(s):  
Hironori Izumi ◽  
Tetsuya Ishimoto ◽  
Hiroshi Yamamoto ◽  
Hisao Nishijo ◽  
Hisashi Mori
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shin Hayase ◽  
Chengru Shao ◽  
Masahiko Kobayashi ◽  
Chihiro Mori ◽  
Wan-chun Liu ◽  
...  

AbstractSongbirds are one of the few animal taxa that possess vocal learning abilities. Different species of songbirds exhibit species-specific learning programs during song acquisition. Songbirds with open-ended vocal learning capacity, such as the canary, modify their songs during adulthood. Nevertheless, the neural molecular mechanisms underlying open-ended vocal learning are not fully understood. We investigated the singing-driven expression of neural activity-dependent genes (Arc, Egr1, c-fos, Nr4a1, Sik1, Dusp6, and Gadd45β) in the canary to examine a potential relationship between the gene expression level and the degree of seasonal vocal plasticity at different ages. The expression of these genes was differently regulated throughout the critical period of vocal learning in the zebra finch, a closed-ended song learner. In the canary, the neural activity-dependent genes were induced by singing in the song nuclei throughout the year. However, in the vocal motor nucleus, the robust nucleus of the arcopallium (RA), all genes were regulated with a higher induction rate by singing in the fall than in the spring. The singing-driven expression of these genes showed a similar induction rate in the fall between the first year juvenile and the second year adult canaries, suggesting a seasonal, not age-dependent, regulation of the neural activity-dependent genes. By measuring seasonal vocal plasticity and singing-driven gene expression, we found that in RA, the induction intensity of the neural activity-dependent genes was correlated with the state of vocal plasticity. These results demonstrate a correlation between vocal plasticity and the singing-driven expression of neural activity-dependent genes in RA through song development, regardless of whether a songbird species possesses an open- or closed-ended vocal learning capacity.


2016 ◽  
Vol 48 (10) ◽  
pp. 762-770 ◽  
Author(s):  
Hayk Simonyan ◽  
Chansol Hurr ◽  
Colin N. Young

Bioluminescence imaging is an effective tool for in vivo investigation of molecular processes. We have demonstrated the applicability of bioluminescence imaging to spatiotemporally monitor gene expression in cardioregulatory brain nuclei during the development of cardiovascular disease, via incorporation of firefly luciferase into living animals, combined with exogenous d-luciferin substrate administration. Nevertheless, d-luciferin uptake into the brain tissue is low, which decreases the sensitivity of bioluminescence detection, particularly when considering small changes in gene expression in tiny central areas. Here, we tested the hypothesis that a synthetic luciferin, cyclic alkylaminoluciferin (CycLuc1), would be superior to d-luciferin for in vivo bioluminescence imaging in cardiovascular brain regions. Male C57B1/6 mice underwent targeted delivery of an adenovirus encoding the luciferase gene downstream of the CMV promoter to the subfornical organ (SFO) or paraventricular nucleus of hypothalamus (PVN), two crucial cardioregulatory neural regions. While bioluminescent signals could be obtained following d-luciferin injection (150 mg/kg), CycLuc1 administration resulted in a three- to fourfold greater bioluminescent emission from the SFO and PVN, at 10- to 20-fold lower substrate concentrations (7.5–15 mg/kg). This CycLuc1-mediated enhancement in bioluminescent emission was evident early following substrate administration (i.e., 6–10 min) and persisted for up to 1 h. When the exposure time was reduced from 60 s to 1,500 ms, minimal signal in the PVN was detectable with d-luciferin, whereas bioluminescent images could be reliably captured with CycLuc1. These findings demonstrate that bioluminescent imaging with the synthetic luciferin CycLuc1 provides an improved physiological genomics tool to investigate molecular events in discrete cardioregulatory brain nuclei.


2019 ◽  
Author(s):  
Manuel Gomez-Ramirez ◽  
Alexander I. More ◽  
Nina G. Friedman ◽  
Ute Hochgeschwender ◽  
Christopher I. Moore

ABSTRACTBioLuminescent (BL) light production can modulate neural activity and behavior through coexpressed OptoGenetic (OG) elements, an approach termed ‘BL-OG’. Yet, the relationship between BL-OG effects and bioluminescent photon emission has not been characterized in vivo. Further, the degree to which BL-OG effects strictly depend on optogenetic mechanisms driven by bioluminescent photons is unknown. Crucial to every neuromodulation method is whether the activator shows a dynamic concentration range driving robust, selective, and non-toxic effects. We systematically tested the effects of four key components of the BL-OG mechanism (luciferin, oxidized luciferin, luciferin vehicle, and bioluminescence), and compared these against effects induced by the Luminopsin-3 (LMO3) BL-OG molecule, a fusion of slow burn Gaussia luciferase (sbGLuc) and Volvox ChannelRhodopsin-1 (VChR1). We performed combined bioluminescence imaging and electrophysiological recordings while injecting specific doses of Coelenterazine (substrate for sbGluc), Coelenteramide (CTM, the oxidized product of CTZ), or CTZ vehicle. CTZ robustly drove activity in mice expressing LMO3, with photon production proportional to firing rate. In contrast, low and moderate doses of CTZ, CTM, or vehicle did not modulate activity in mice that did not express LMO3. We also failed to find bioluminescence effects on neural activity in mice expressing an optogenetically non-sensitive LMO3 variant. We observed weak responses to the highest dose of CTZ in control mice, but these effects were significantly smaller than those observed in the LMO3 group. These results show that in neocortex in vivo, there is a large CTZ range wherein BL-OG effects are specific to its active chemogenetic mechanism.


2019 ◽  
Author(s):  
Hsien-Wei Yeh ◽  
Tianchen Wu ◽  
Minghai Chen ◽  
Hui-wang Ai

ABSTRACTIn vivo bioluminescence imaging (BLI) has become a standard, non-invasive imaging modality for following gene expression or the fate of proteins and cells in living animals. Currently, bioluminescent reporters used in laboratories are mostly derivatives of two major luciferase families: ATP-dependent insect luciferases and ATP-independent marine luciferases. Inconsistent results have been reported for experiments using different bio-luminescent reporters and users are often confused when trying to choose an optimal bioluminescent reporter for a given research purpose. Herein, we re-examined inconsistency in several experimental settings and identified factors, such as ATP dependency, serum stability, and molecular size, which significantly affected BLI results. We expect this study will make the research community aware of these factors and facilitate more accurate interpretation of BLI data by considering the nature of each bioluminescent reporter.


2021 ◽  
Author(s):  
Adam T. Vogel ◽  
Shelley J. Russek

AbstractAdvancements in genetically based technologies have begun to allow us to better understand the relationships between underlying neural activity and the patterns of measurable behavior that can be reproducibly studied in the laboratory. As this field develops, there are key limitations to the currently available technologies hindering their full potential to deliver meaningful datasets. The limitations which are most critical to advancement of these technologies in behavioral neuroscience are: the temporal resolution at which physiological events can be windowed, the divergent molecular pathways in signal transduction that introduce ambiguity into the output of activity sensors, and the impractical size of the genetic material that requires 3-4 separate AAV vectors to deliver a fully functional system into a cell. To address these limitations and help bring the potential of these types of technologies into better realization, we have engineered a nucleus localized light-sensitive Ca2+-dependent gene expression system based on AsLOV2 and the downstream responsive element antagonist modulator (DREAM). The design and engineering of each component was performed in such a way to: 1) preserve behaviorally relevant temporal dynamics, 2) preserve signal fidelity appropriate for studying experience-driven neural activity patterns and their relationship to specific animal responses, and 3) have full delivery of the genetic material via a single AAV vector. The system was tested in vitro and subsequently in vivo with neural activity induced by Channelrhodopsin and could be used in the future with behaviorally-driven neural activity. To our knowledge this is the first optogenetic tool for the practical use of linking activity-dependent gene activation in response to direct nuclear calcium transduction.


PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9397 ◽  
Author(s):  
Xiaojuan Chen ◽  
Courtney S. Larson ◽  
Jason West ◽  
Xiaomin Zhang ◽  
Dixon B. Kaufman

2005 ◽  
Vol 16 (11) ◽  
pp. 1325-1332 ◽  
Author(s):  
Andrew Wilber ◽  
Joel L. Frandsen ◽  
Kirk J. Wangensteen ◽  
Stephen C. Ekker ◽  
Xin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document