Incidence of Abcd1 level on the induction of cell death and organelle dysfunctions triggered by very long chain fatty acids and TNF-α on oligodendrocytes and astrocytes

2012 ◽  
Vol 33 (2) ◽  
pp. 212-228 ◽  
Author(s):  
Mauhamad Baarine ◽  
Kévin Ragot ◽  
Anne Athias ◽  
Thomas Nury ◽  
Zilal Kattan ◽  
...  
2019 ◽  
Author(s):  
Laura Parisi ◽  
Shahin Sowlati-Hashjin ◽  
Ilyas Berhane ◽  
Kevin Carter ◽  
Jonathan Lovell ◽  
...  

In this work we investigate the mechanisms by which very long chain fatty acids (VLCFA) contribute to membrane permeabilization during necroptosis, a form of highly regulated necrotic cell death. We show that inactivating fatty acid elongase ELOVL7 prevents VLCFA accumulation and necroptotic cell death, while it's overexpression causes membrane permeabilization. We show that VLCFA can directly permeabilize lipid bilayers and investigate the basis of these effects by molecular dynamics simulations. Finally, we show that VLCFA can be used as substrates for protein fatty acylation during necroptosis, suggesting another potential mechanism by which VLCFA may mediate membrane permeabilization.


2019 ◽  
Author(s):  
Laura Parisi ◽  
Shahin Sowlati-Hashjin ◽  
Ilyas Berhane ◽  
Kevin Carter ◽  
Jonathan Lovell ◽  
...  

In this work we investigate the mechanisms by which very long chain fatty acids (VLCFA) contribute to membrane permeabilization during necroptosis, a form of highly regulated necrotic cell death. We show that inactivating fatty acid elongase ELOVL7 prevents VLCFA accumulation and necroptotic cell death, while it's overexpression causes membrane permeabilization. We show that VLCFA can directly permeabilize lipid bilayers and investigate the basis of these effects by molecular dynamics simulations. Finally, we show that VLCFA can be used as substrates for protein fatty acylation during necroptosis, suggesting another potential mechanism by which VLCFA may mediate membrane permeabilization.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1826
Author(s):  
Jie Zhou ◽  
Marcia R. Terluk ◽  
Paul J. Orchard ◽  
James C. Cloyd ◽  
Reena V. Kartha

The accumulation of saturated very long-chain fatty acids (VLCFA, ≥C22:0) due to peroxisomal impairment leads to oxidative stress and neurodegeneration in X-linked adrenoleukodystrophy (ALD). Among the neural supporting cells, myelin-producing oligodendrocytes are the most sensitive to the detrimental effect of VLCFA. Here, we characterized the mitochondrial dysfunction and cell death induced by VLFCA, and examined whether N-acetylcysteine (NAC), an antioxidant, prevents the cytotoxicity. We exposed murine oligodendrocytes (158 N) to hexacosanoic acid (C26:0, 1–100 µM) for 24 h and measured reactive oxygen species (ROS) and cell death. Low concentrations of C26:0 (≤25 µM) induced a mild effect on cell survival with no alterations in ROS or total glutathione (GSH) concentrations. However, analysis of the mitochondrial status of cells treated with C26:0 (25 µM) revealed depletion in mitochondrial GSH (mtGSH) and a decrease in the inner membrane potential. These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons < 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


2021 ◽  
Vol 204 ◽  
pp. 111795
Author(s):  
Gulen Melike Demirbolat ◽  
Goknil Pelin Coskun ◽  
Omer Erdogan ◽  
Ozge Cevik

Sign in / Sign up

Export Citation Format

Share Document