scholarly journals Orbital period changes in IO Cep, IM Cep and TX Ari: Path to masses of distant components

New Astronomy ◽  
2022 ◽  
pp. 101754
Author(s):  
V. Bakış ◽  
Z. Eker ◽  
H. Bakış ◽  
S. Kayacı ◽  
G. Yücel ◽  
...  
Keyword(s):  
1979 ◽  
Vol 46 ◽  
pp. 385
Author(s):  
M.B.K. Sarma ◽  
K.D. Abhankar

AbstractThe Algol-type eclipsing binary WX Eridani was observed on 21 nights on the 48-inch telescope of the Japal-Rangapur Observatory during 1973-75 in B and V colours. An improved period of P = 0.82327038 days was obtained from the analysis of the times of five primary minima. An absorption feature between phase angles 50-80, 100-130, 230-260 and 280-310 was present in the light curves. The analysis of the light curves indicated the eclipses to be grazing with primary to be transit and secondary, an occultation. Elements derived from the solution of the light curve using Russel-Merrill method are given. From comparison of the fractional radii with Roche lobes, it is concluded that none of the components have filled their respective lobes but the primary star seems to be evolving. The spectral type of the primary component was estimated to be F3 and is found to be pulsating with two periods equal to one-fifth and one-sixth of the orbital period.


1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


2008 ◽  
Vol 4 (S253) ◽  
pp. 459-461
Author(s):  
E. Miller-Ricci ◽  
J. F. Rowe ◽  
D. Sasselov ◽  
J. M. Matthews ◽  
R. Kuschnig ◽  
...  

AbstractWe have measured transit times for HD 189733 passing in front of its bright (V = 7.67) chromospherically active and spotted parent star. Nearly continuous broadband photometry of this system was obtained with the MOST (Microvariability & Oscillations of STars) space telesope during 21 days in August 2006, monitoring 10 consecutive transits. We have used these data to search for deviations from a constant orbital period which can indicate the presence of additional planets in the system that are as yet undetected by Doppler searches. We find no variations above the level of ±45 s, ruling out planets in the Earth-to-Neptune mass range in a number of resonant orbits. We find that a number of complications can arise in measuring transit times for a planet transiting an active star with large star spots. However, such transiting systems are also useful in that they can help to constrain and test spot models. This has implications for the large number of transiting systems expected to be discovered by the CoRoT and Kepler missions.


2019 ◽  
Vol 15 (S356) ◽  
pp. 407-407
Author(s):  
Abduselam Mohammed

AbstractAs a pulsating star moves in its binary orbit, the path length of the light between us and the star varies, leading to the periodic variation in the arrival time of the signal from the star to us (earth). With the consideration of pulsators light arrival time delay effects several new methods which allows using Kepler photometric data (light curves) alone to find binary stars have been recently developed. Among these modern techniques we used binarogram method and we identified that several δSct pulsating stars have companions. The application of these method on detecting long periods(i.e. longer than about 50 d) δSct pulsating stars is not new, but the uniqueness of this study is we verified that it is also applicable to detect and determine the orbital elements of short periods (i.e short orbital period) δSct pulsating stars. With this investigation, we identified the possible way to overcome effects of fictious peaks, even, on the maximum peaks helpful to verify weather the star has companion or not depend up on the existence of the time-delay. Then, we applied the technique on known binary stars and their orbital elements are previously published. Finally, we identified some new short orbital period δSct pulsating stars and obtained their orbital frequency and period with the same procedures. Because of with our attempts we succeeded and verified the applicability of the method (the Binarogram method) on these stars (i.e short orbital period) for the first time, we expect that our present study will play a great role for similar study and to improve our binary statistics.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2019 ◽  
Vol 489 (2) ◽  
pp. 1797-1804 ◽  
Author(s):  
Rebecca G Martin ◽  
Alessia Franchini

ABSTRACT Giant outbursts of Be/X-ray binaries may occur when a Be-star disc undergoes strong eccentricity growth due to the Kozai–Lidov (KL) mechanism. The KL effect acts on a disc that is highly inclined to the binary orbital plane provided that the disc aspect ratio is sufficiently small. The eccentric disc overflows its Roche lobe and material flows from the Be star disc over to the companion neutron star causing X-ray activity. With N-body simulations and steady state decretion disc models we explore system parameters for which a disc in the Be/X-ray binary 4U 0115+634 is KL unstable and the resulting time-scale for the oscillations. We find good agreement between predictions of the model and the observed giant outburst time-scale provided that the disc is not completely destroyed by the outburst. This allows the outer disc to be replenished between outbursts and a sufficiently short KL oscillation time-scale. An initially eccentric disc has a shorter KL oscillation time-scale compared to an initially circular orbit disc. We suggest that the chaotic nature of the outbursts is caused by the sensitivity of the mechanism to the distribution of material within the disc. The outbursts continue provided that the Be star supplies material that is sufficiently misaligned to the binary orbital plane. We generalize our results to Be/X-ray binaries with varying orbital period and find that if the Be star disc is flared, it is more likely to be unstable to KL oscillations in a smaller orbital period binary, in agreement with observations.


2015 ◽  
Vol 70 (3) ◽  
pp. 299-309 ◽  
Author(s):  
A. P. Bisyarina ◽  
A. M. Sobolev ◽  
S. Yu. Gorda ◽  
S. Yu. Parfenov

2015 ◽  
Vol 452 (3) ◽  
pp. 2540-2545 ◽  
Author(s):  
D. J. D'Orazio ◽  
Z. Haiman ◽  
P. Duffell ◽  
B. D. Farris ◽  
A. I. MacFadyen

2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.


Sign in / Sign up

Export Citation Format

Share Document