scholarly journals Discovery of effective scale source rocks of the Ordovician Majiagou Fm in the Ordos Basin and its geological significance

2016 ◽  
Vol 3 (4) ◽  
pp. 330-338 ◽  
Author(s):  
Jianqi Tu ◽  
Yiguo Dong ◽  
Bin Zhang ◽  
Hongli Nan ◽  
Chengjian Li ◽  
...  
2017 ◽  
Vol 54 (12) ◽  
pp. 1228-1247
Author(s):  
Zhengjian Xu ◽  
Luofu Liu ◽  
Tieguan Wang ◽  
Kangjun Wu ◽  
Wenchao Dou ◽  
...  

With the success of Bakken tight oil (tight sandstone oil and shale oil) and Eagle Ford tight oil in North America, tight oil has become a research focus in petroleum geology. In China, tight oil reservoirs are predominantly distributed in lacustrine basins. The Triassic Chang 6 Member is the main production layer of tight oil in the Ordos Basin, in which the episodes, timing, and drive of tight oil charging have been analyzed through the petrography, fluorescence microspectrometry, microthermometry, and trapping pressure simulations of fluid inclusions in the reservoir beds. Several conclusions have been reached in this paper. First, aqueous inclusions with five peaks of homogenization temperatures and oil inclusions with three peaks of homogenization temperatures occurred in the Chang 6 reservoir beds. The oil inclusions are mostly distributed in fractures that cut across and occur within the quartz grains, in the quartz overgrowth and calcite cements, and the fractures that occur within the feldspar grains, with blue–green, green, and yellow–green fluorescence colours. Second, the peak wavelength, Q650/500, and QF535 of the fluorescence microspectrometry indicate three charging episodes of tight oil with different oil maturities. The charging timings (141–136, 126–118, and 112–103 Ma) have been ascertained by projecting the homogenization temperatures of aqueous inclusions onto the geological time axis. Third, excess-pressure differences up to 10 MPa between the Chang 7 source rocks and the Chang 6 reservoir beds were the main driving mechanism supporting the process of nonbuoyancy migration.


2021 ◽  
Author(s):  
Jiyuan You ◽  
Yiqun Liu ◽  
Dingwu Zhou ◽  
Yiyao Yang

Abstract Because few well-preserved hydrothermal channels have been found in terrestrial sedimentary rocks, research on LTHA in geological history is relatively sparse. In this study, we present our original discovery of “hydrothermal channels” from the Chang 7 source rocks of the Triassic Yanchang Formation in the Ordos Basin, China, and provide the best evidence for deciphering LTHA preserved in the geological record (i.e., sedimentary rocks). Three possible LTHA samples (i.e., samples 1551.6, 1551.6-2 and 1574.4) were collected for this study; they were interbedded with mudstones and oil shales, indicative of a deep-lake sedimentary environment. All three samples consist mainly of anhydrite, pyrite, and dolomite with the formation of mineral zoning across the walls of these structures, suggesting a sulfate-dominated stage and a carbonate-sulfide replacement stage. Moreover, their in situ geochemistry is characterized by high Eu, U, Th, Sr, Mn and U/Th ratios, which are typical indicators of hydrothermal vents. In addition, their S isotopes range from 7.89% to 10.88%, the magmatic sulfur accounted for approximately 94.3%, implying a possible magmatic trigger for these hydrothermal channels. All this evidence shows that the Triassic sedimentary rocks of the Ordos Basin probably contain LTHA. Comparing ancient LTHA to modern hydrothermal chimneys, we should note the important implications of LTHA; their formation mechanism may have been related to oil production, and they are possible indicators for future oil investigations. Further, they have great significance for studying the hydrothermal properties of primary dolomite.


2020 ◽  
Author(s):  
Jiyuan You ◽  
Yiqun Liu ◽  
Dingwu Zhou

<p>The "black chimney" type of hydrothermal vents in the modern deep sea have become a popular research topic in many disciplines. Due to the actual conditions, the research on palaeo-thermal vents in geological history is relatively low. Fortunately, the discovery of hydrothermal vents and bio-fossils from the Chang 7 source rocks of the Yanchang Formation of the Triassic in the Ordos Basin, China, provides the best evidence for deciphering hydrothermal activity during geological history. Here, we report a case study. Through ordinary sheet observation, scanning electron microscopy and electron probe observation, layered grained siliceous rocks, dolomites, and hydrothermal mineral combinations, such as pyrite + dolomite + gypsum and calcite + barite, are found. Their unique petrological characteristics, mineral composition, and structure confirm the existence of palaeo-thermal fluid vents. We further analysed the geochemical characteristics and in situ isotope characteristics. The study found that Cs, U, Th, Pb, Ba and other trace elements of the sample showed positive abnormalities, in which values of U/Th were high; in addition, the enrichment of major elements such as Sr, Mn, and the in situ sulphur isotopes of pyrite reached 7.89%-10.88%. This study of hydrothermal vents over geological history is expected to provide new insights on the life forms of various extreme microorganisms in hydrothermal environments and on their formation of high-quality source rocks.</p>


2017 ◽  
Vol 5 (2) ◽  
pp. SF81-SF98
Author(s):  
Jing Wang ◽  
Xiangbo Li ◽  
Huaqing Liu ◽  
Xiuqin Deng ◽  
Rong Wanyan

The Ordos Basin has abundant conventional and unconventional oil and gas resources. Focusing on shale oil in the Ordos Basin, we studied the distribution, depositional features, and resource potential of shales in the upper Triassic Yanchang Formation based on the Ordos Basin development and depocenter migration. During the late Triassic, the Ordos Basin was a large cratonic sedimentary basin that bordered to the Hexi Corridor to the west, the southern North China block to the east, the Qilian and western Qinling orogenic zone to the south, and the foot of the Yin Mountains to the north. During deposition of the Yanchang Formation, its depocenter was not fixed. It migrated to the west before deposition of the Chang 7 oil layer and to the south after deposition of the Chang 7 oil layer. Controlled by the depocenter migration and relevant deep-lake facies, the Yanchang Formation mainly developed two sets of source rocks. The dark mudstone and shale in the Chang 9 oil layer is chiefly distributed in the south-central region of the basin, with thicknesses of 4–16 m and covers an area of approximately [Formula: see text]. The shales in the Chang 7 oil layer can be divided into two types, black oil shale and dark mudstone, and they are much thicker and more widespread than the dark mudstone in the Chang 9 oil layer. The black shale alone can be up to 60 m thick, and covers an area of more than [Formula: see text]. The shales in the Chang 7 and 9 oil layers were mainly formed in a deep-lake environment that produced high concentrations of organic matter and large hydrocarbon generation potential. According to preliminary estimates, the Chang 7 oil shale may contain [Formula: see text] of oil, thereby representing a huge resource potential with broad exploration prospectivity.


2017 ◽  
Vol 35 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Xiaoqi Wu ◽  
Jianhui Zhu ◽  
Chunhua Ni ◽  
Kuang Li ◽  
Yanqing Wang ◽  
...  

The molecular composition, stable carbon and hydrogen isotopes, and light hydrocarbons of the Lower Paleozoic natural gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. The Lower Paleozoic gas in the Daniudi gas field displays methane contents of 87.41–93.34%, dryness coefficients (C1/C1–5) ranging from 0.886 to 0.978, δ13C1 and δ13C2 values ranging from −40.3 to −36.4‰, with an average of −38.3‰, and from −33.6 to −24.2‰, with an average of −28.4‰, respectively, and δD1 values ranging from −197 to −160‰. The alkane gas generally displays positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of the Lower Paleozoic gas are dominated by methylcyclohexane and iso-alkanes, respectively. The Lower Paleozoic gas in the Daniudi gas field is mixed from coal-derived and oil-associated gases, similar to that observed in the Jingbian gas field. The oil-associated gas in the Lower Paleozoic gas is secondary oil cracking gas and displays a lower cracking extent than that in the Jingbian gas field. The coal-derived gas in the Lower Paleozoic gas in the Daniudi gas field migrated from the Upper Paleozoic gas through the window area where the iron–aluminum mudstone caprocks in the Upper Carboniferous Benxi Formation were missing. The oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field was probably derived from presalt source rocks in the Lower Ordovician Majiagou Formation rather than the limestone in the Upper Carboniferous Taiyuan Formation. It seems unlikely that the marlstone in the Upper Ordovician Beiguoshan Formation and shale in the Middle Ordovician Pingliang Formation on the western and southwestern margins of the Ordos Basin contributed to the oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field.


Sign in / Sign up

Export Citation Format

Share Document