Quantitative evaluation of gas generation from the Upper Paleozoic coal, mudstone and limestone source rocks in the Ordos Basin, China

2019 ◽  
Vol 178 ◽  
pp. 224-241 ◽  
Author(s):  
Jianliang Liu ◽  
Keyu Liu ◽  
Chang Liu
2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2017 ◽  
Vol 54 (12) ◽  
pp. 1228-1247
Author(s):  
Zhengjian Xu ◽  
Luofu Liu ◽  
Tieguan Wang ◽  
Kangjun Wu ◽  
Wenchao Dou ◽  
...  

With the success of Bakken tight oil (tight sandstone oil and shale oil) and Eagle Ford tight oil in North America, tight oil has become a research focus in petroleum geology. In China, tight oil reservoirs are predominantly distributed in lacustrine basins. The Triassic Chang 6 Member is the main production layer of tight oil in the Ordos Basin, in which the episodes, timing, and drive of tight oil charging have been analyzed through the petrography, fluorescence microspectrometry, microthermometry, and trapping pressure simulations of fluid inclusions in the reservoir beds. Several conclusions have been reached in this paper. First, aqueous inclusions with five peaks of homogenization temperatures and oil inclusions with three peaks of homogenization temperatures occurred in the Chang 6 reservoir beds. The oil inclusions are mostly distributed in fractures that cut across and occur within the quartz grains, in the quartz overgrowth and calcite cements, and the fractures that occur within the feldspar grains, with blue–green, green, and yellow–green fluorescence colours. Second, the peak wavelength, Q650/500, and QF535 of the fluorescence microspectrometry indicate three charging episodes of tight oil with different oil maturities. The charging timings (141–136, 126–118, and 112–103 Ma) have been ascertained by projecting the homogenization temperatures of aqueous inclusions onto the geological time axis. Third, excess-pressure differences up to 10 MPa between the Chang 7 source rocks and the Chang 6 reservoir beds were the main driving mechanism supporting the process of nonbuoyancy migration.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2019 ◽  
Vol 110 ◽  
pp. 162-177
Author(s):  
Jun Li ◽  
Jingzhou Zhao ◽  
Xinshan Wei ◽  
Mengna Chen ◽  
Ping Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document