scholarly journals Glacier bursts-triggered debris flow and flash flood in Rishi and Dhauli Ganga valleys: A study on its causes and consequences

Author(s):  
Vishwambhar Prasad Sati
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yonggang Ge ◽  
Jianqiang Zhang ◽  
Xiaojun Guo

After analysing the catastrophic debris flows on August 18, 2012, and on July 9, 2013, in Jushui River basin, An County, the Wenchuan Earthquake seriously striken areas, it was found that they were characterized by the clay soil content of 0.1~1.2%, the density of 1.68~2.03 t/m3, the discharges of 62.2 m3/s to 552.5 m3/s, and the sediment delivery modulus of 1.0~9.4 × 104 m3/km2. Due to intense rainstorm, many large debris flows produced hazard chain, involved in flash flood, debris flow, dammed lake, and outburst flood, and rose Jushui River channel about 1~4 m as well as amplified flood. The hazards and losses mainly originated from the burying and scouring of debris flows, flood inundating, and river channel rise. The prevention of debris flows is facing the intractable problems including potential hazard identification, overstandard debris flow control, control constructions destructing, and river channel rapid rise. Therefore, the prevention measures for the basin, including hazard identification and risk assessment, inhabitants relocating, monitoring and alarming network establishing, emergency plans founding, and river channel renovating, and the integrated control mode for watershed based on regulating the process of debris flow discharge, were recommended for mitigation.


2016 ◽  
Vol 12 (4) ◽  
pp. 85-96
Author(s):  
Byung In Yu ◽  
◽  
Byung Sik Kim ◽  
Suck Ho Lee ◽  
◽  
...  
Keyword(s):  

Eos ◽  
2001 ◽  
Vol 82 (47) ◽  
pp. 572-572 ◽  
Author(s):  
M. C. Larsen ◽  
G. F. Wieczorek ◽  
L. S. Eaton ◽  
B. A. Morgan ◽  
H. Torres-Sierra

2021 ◽  
Vol 930 (1) ◽  
pp. 012076
Author(s):  
M F Khaldirian ◽  
A P Rahardjo ◽  
D Luknanto ◽  
R D R Sondi

Abstract Most of the approaches in numerical modeling techniques are based on the Eulerian coordinate system. This approach faces difficulty in simulating flash flood front propagation. This paper shows an alternative method that implements a numerical modeling technique based on the Lagrangian coordinate system to simulate the water of debris flow. As for the interaction with the riverbed, the simulation uses an Eulerian coordinate system. The method uses the conservative and momentum equations of water and sediment mixture in the Lagrangian form. Source terms represent deposition and erosion. The riverbed in the Eulerian coordinate system interacts with the flow of the mixture. At every step, the algorithm evaluates the relative position of moving nodes of the flow part to the fixed nodes of the riverbed. Computation of advancing velocity and depth uses the riverbed elevation, slope data, and the bed elevation change computation uses the erosion or deposition data of the flow on the moving nodes. Spatial discretization is implementing the Galerkin method. Furthermore, temporal discretization is implementing the forward difference scheme. Test runs show that the algorithm can simulate downward, upward, and reflected backward 1-D flow cases. Two-D model tests and comparisons with SIMLAR software show that the algorithm works in simulating debris flow.


2000 ◽  
Vol 22 ◽  
Author(s):  
N. Gurung ◽  
A. Rahman ◽  
Y. Iwao

The flash flood and debris flow after a heavy rainfall wiped out a village of southern Japan on the tragic midnight of 10 July 1997, and a great loss of property and lives took place in this ill-fated incident. After the heavy rainfall, the debris flow induced by a sudden flash flood took 21 lives in Southern Kyushu. Detailed field investigation, in situ survey, electrical survey, and hydrogeological analyses were conducted to find out the triggering factors of the disaster. The main factors of this disaster were a hidden fault and the perched groundwater. Moving soil mass downhill into the agricultural pond had triggered the flash flood. The details of sequential disaster events as perceived from the observation and analyses are presented in this paper.


Author(s):  
Joshua Landis ◽  
Grant Meyer

An understanding of the ecological health of stream systems and riparian areas in Yellowstone National Park (YNP) requires knowledge of their response to climatic and hydrological influences; intrinsic factors such as relief and geological materials are important influences as well (e.g., O'Hara and Meyer 1995). Recent studies of southwestern (Ely et al. 1993) and midwestern U.S. rivers (Knox 1993) have shown that relatively minor climatic changes in the late Holocene are associated with large fluctuations in flood magnitude and frequency. In small, steep drainage basins of northeastern YNP (Figure 1), Meyer et al. (1992, 1995) associated increased fire-related debris-flow activity with decadal to millennial-scale cycles of drought over the Holocene. Observations of modern events indicate that debris-flow and flash floods are also produced in the absence of fire in this rugged mountainous region, primarily by intense summer thunderstorm precipitation. Although a correlation between drought severity and fire magnitude in Yellowstone is clear (Balling et al. 1992a, 1992b), the relationship hypothesized by Meyer et al. (1992,1995) between warm, drought-prone climatic episodes and debris-flow activity in this region requires further investigation. Therefore, we use relatively high-resolution lichenometric and tree­ring dating methods to construct a 250-year history of major hydrologic events in small, steep tributary basins of Soda Butte Creek in northeastern Yellowstone. This period spans the transition from the generally cooler global climate of the Little Ice Age to the present (e.g., Grove 1988). Although the Little Ice Age was not uniformly cold in either a spatial or temporal sense (Jones and Bradley 1995), and YNP climate is not well known in the earlier part of this interval, trends toward increasing summer temperatures and decreasing winter precipitation in YNP over the last ~100 yr are consistent with this transition (Balling et al. 1992a).


Fact Sheet ◽  
2002 ◽  
Author(s):  
M.C. Larsen ◽  
G.F. Wieczorek ◽  
L.S. Eaton ◽  
B.A. Morgan ◽  
Heriberto Torres-Sierra

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1088
Author(s):  
Xue Yang ◽  
Shili Guo ◽  
Xin Deng ◽  
Wei Wang ◽  
Dingde Xu

The intensification of global climate change leads to frequent mountain torrents, landslides, debris flows and other disasters, which seriously threaten the safety of residents’ lives and property. However, few studies have compared and analyzed the livelihood vulnerability and adaptation strategies of farmers in different disaster-threatened areas under the background of climate change. Based on survey data of 327 households in the areas threatened by mountain floods, landslides and debris flow in Sichuan Province, this study analyzed the characteristics of livelihood vulnerability and adaptation strategies of households in the areas threatened by different disaster types and constructed multinomial logistic regression models to explore their correlations. The findings show that: (1) The livelihood vulnerability indices of farmers in different hazard types showed different characteristics. Among them, the livelihood vulnerability index of farmers in landslide-threatened zones is the highest, followed by the livelihood vulnerability index of farmers in debris-flow-threatened zones, and finally the livelihood vulnerability index of farmers in flash flood threat zones. At the same time, all three natural hazards show a trend of higher vulnerability in the sensitivity dimension than in the exposure and livelihood resilience dimensions. (2) The nonfarming livelihood strategy is the main livelihood strategy for farmers in different disaster-type-threatened areas. At the same time, the vulnerability of farmers choosing the nonfarming livelihood strategy is much higher than that of farmers choosing the part-time livelihood strategy and pure farming livelihood strategy, and the vulnerability of sensitivity dimension is higher than that of the exposure dimension and livelihood resilience dimension. (3) For farmers in landslide- and debris-flow-threatened areas, livelihood resilience is an important factor affecting their livelihood strategy. There was a positive correlation between livelihood resilience and farmers’ choice of pure agricultural livelihood strategies in these two natural-disaster-threatened areas. This study deepens our understanding of the characteristics and relationships of farmers’ livelihood vulnerability and adaptation strategies under different disaster types in the context of climate change, and then provides the reference basis for the formulation of livelihood-adaptive capacity promotion-related policy.


2021 ◽  
Author(s):  
Federico Gómez Cardona ◽  
Edier Aristizábal Giraldo ◽  
Maria Isabel Arango ◽  
Martin Mergili

<p>Debris-flow processes are highly destructive phenomena that endanger life and infrastructure located in mountainous areas. The Colombian Andes are especially susceptible to this type of processes. Disaster databases include 1,387 channelized debris flow, debris flood, and flash flood records between 1921 and 2020, causing 3,332 deaths and affecting 1,152,613 people. These statistics show the importance of carrying out a regional debris flow hazard assessment to prioritize resources and actions to reduce risk.</p><p>One of the main challenges when evaluating debris-flow processes hazard is their multi-hazard nature: they are understood as part of a concatenated phenomenon at catchment scale, including cascading effects of landslides, flash floods, debris floods and channelised debris flows. In this study, a multi-hazard approach was implemented to assess debris-flow processes susceptibility and hazard on both regional and local scale, combining statistical and physically based models in combination with geomorphological observations.</p><p>The study area is located in the central Colombia Andes, with an extension of 63,612 km<sup>2</sup> where 3,039 catchments were analysed for their debris flow-processes susceptibility, using machine learning methods based on morphometric parameters. This analysis was joined with a physically-based slope stability model to estimate potential sediment volumes that might be supplied by intense rainstorms. By combining susceptibility, slope stability, and soil type at the catchment scale, it was possible to understand the magnitude of the potential of different debris-flow processes. Susceptibility analysis allowed to differentiate the catchments into alluvial and torrential and their magnitude level was categorized based on the volume of unstable soil to find hazard and then, used to select critical catchments for a more detailed scale.</p><p>A detailed hazard analysis was carried out for those selected areas through hydrological and hydraulic software, along with fluid-dynamic mass routing models. These methodologies were used with a sub- metric resolution and provide detailed information such as flow height, speed, and pressure to categorize more accurate hazard levels, always framed on the torrential geomorphology units.</p><p>Traditional hydraulic and hydrological models were insufficient to provide accurate heights and extents of debris-flow processes since they do not consider their multi-hazard nature nor the volume of sediments from landslides and channel erosion that are added to the flow. As a result, the extent of the flow was smaller than the observed morphological features. The fluid dynamic model r.avaflow considers the rheologic change and fitted better to the type of events. The model was used to simulate different sediment concentrations and flow types. The model results were complemented with the different torrential units mapped through fieldwork. This way, it was possible to establish the events’ maximum potential extent linked to their return periods.</p><p>This multi-hazard and multi-scale methodology is a useful tool for stakeholders to prioritize and improve urban planning. It grants a perspective from regional to local scale, can be adapted to fit into specific environments and contexts.</p>


Sign in / Sign up

Export Citation Format

Share Document